The approximation
$$ L = \int_{x=1}^\infty \frac{1}{x^2} = \left[ -\frac{1}{x}\right]^\infty_1 = 1$$
actually undercounts the true area of
$$ \sum_{x=1}^\infty \frac{1}{n^2}$$

Adding the sum of all the triangular deficits
$$ T = \frac{f(1)-f(2)}{2} + \frac{f(2)-f(3)}{2} + \frac{f(3)-f(4)}{2} + ...= \frac{f(1)}{2}= \frac{1}{2}$$
so that
$$ \sum_{x=1}^\infty \frac{1}{n^2} \approx L + T = 1 + \frac{1}{2} = 1.5$$
which still undercounts the true area by a small crescent shaped summation.
E.g. area of the first crescent between $x=1$ and $x=2$ is area of the trapezoid minus area under the integral
$$ A_1 = \frac{1}{2}\left(\frac{1}{1^2} + \frac{1}{2^2}\right) - \left(\frac{1}{1} -\frac{1}{2} \right) = \frac{5}{8} - \frac{1}{2} = \frac{1}{8}$$
In general
$$A_n = \frac{1}{2}\left(\frac{1}{n^2} + \frac{1}{(n+1)^2}\right) - \left( \frac{1}{n}-\frac{1}{n+1} \right) = \frac{1}{2n^2(n+1)^2}$$
Therefore the infinite sum of all cresents:
$$A = A_1 + A_2 + A_3 + ...$$
exactly accounts for the remaining area deficit.
Hence
$$\sum_1^\infty \frac{1}{n^2}= L + T + A$$
$$= 1 + \frac{1}{2} + \sum_{i=1}^\infty \frac{1}{2n^2(n+1)^2}$$
which converges termwise as $O(\frac{1}{n^4})$ faster than the original $O(\frac{1}{n^2})$.
Further convergence acceleration may be achieved by splitting
$$\sum_{i=1}^\infty \frac{1}{2n^2(n+1)^2}$$
into easily calculated boundary terms $+$ an even faster converging infinite sum.
Euler used the same general method to carve away successive boundary terms using integration by parts. Starting with
$$A_1 = \frac{f(0)+f(1)}{2} - \int_0^1 \color{blue}{1} \cdot \color{green}{f(x)} dx$$
Integrating by parts using $u = \color{green}{f(x)}$ and $dv = \color{blue}{1 \cdot dx}$,
$$A_1 = \frac{f(0)+f(1)}{2} - \left[f(x)(x+c)\right]_0^1 + \int_0^1 (x+c) f^1(x) dx$$
Since $c$ may take on any value, choosing $c=-\frac{1}{2}$ gives
$$A_1 = \frac{f(0)+f(1)}{2} - \frac{f(1)+f(0)}{2} + \int_0^1 \left(x-\frac{1}{2}\right) f^1(x) dx$$
$$= \left[f^1(x) \left(\frac{x^2}{2}-\frac{x}{2}+ c\right)\right]_0^1 - \int_0^1\left(\frac{x^2}{2}-\frac{x}{2}+ c\right)f^2(x)dx$$
Choosing $c=\frac{1}{12}$,
$$=\frac{f^1(1)-f^1(0)}{12} - \int_0^1\left(\frac{x^2}{2}-\frac{x}{2}+ \frac{1}{12}\right) f^2(x)dx$$
$$=\frac{f^1(1)-f^1(0)}{12} - \left[f^2(x)\left(\frac{x^3}{6}-\frac{x^2}{4}+ \frac{x}{12}+c\right)\right]_0^1 + \int_0^1 \left(\frac{x^3}{6}-\frac{x^2}{4}+ \frac{x}{12}+c\right) f^3(x)dx$$
Choosing $c=0$,
$$=\frac{f^1(1)-f^1(0)}{12} + \int_0^1 \left(\frac{x^3}{6}-\frac{x^2}{4}+ \frac{x}{12}\right) f^3(x)dx$$
$$=\frac{f^1(1)-f^1(0)}{12} - \left[f^3(x)\left(\frac{x^4}{24}-\frac{x^3}{12}+ \frac{x^2}{24} + c\right)\right]_0^1 + \int_0^1 \left(\frac{x^4}{24}-\frac{x^3}{12}+ \frac{x^2}{24} + c\right) f^4(x)dx$$
Choosing $c=-\frac{1}{720}$,
$$=\frac{f^1(1)-f^1(0)}{12} - \frac{f^3(1)-f^3(0)}{720} + \int_0^1 \left(\frac{x^4}{24}-\frac{x^3}{12}+ \frac{x^2}{24} + c\right) f^4(x)dx$$
$$\approx \frac{f^1(1)-f^1(0)}{12} - \frac{f^3(1)-f^3(0)}{720}$$
ending the approximation.
Since
$$A_1 \approx \frac{f^1(2)-f^1(1)}{12} - \frac{f^3(2)-f^3(1)}{720}$$
$$A_2 \approx \frac{f^1(3)-f^1(2)}{12} - \frac{f^3(3)-f^3(2)}{720}$$
$$A_3 \approx \frac{f^1(4)-f^1(3)}{12} - \frac{f^3(4)-f^3(3)}{720}$$
$$.$$
$$.$$
By telescoping,
$$\sum_i^\infty A_i \approx - \frac{f^1(1)}{12} + \frac{f^3(1)}{720}$$
and since
$$ \left[f^1\left(x\right) = -\frac{2}{x^3} \right]_1 = -2$$
$$ \left[f^3\left(x\right) = -\frac{24}{x^5} \right]_1 = -24$$
Therefore
$$ \sum_1^\infty \frac{1}{n^2} = L + T + A \approx 1 + \frac{1}{2} +\frac{1}{6} -\frac{1}{30} = 1.6 \dot 3 $$