For notational simplicity, let
$$
\mathbf{F} = \nabla \times (f \mathbf{u})
\qquad\text{and}\qquad
\mathbf{G} = \nabla \times (g \mathbf{u})
$$
Also, let $\partial_{\mathbf{u}} = \mathbf{u} \cdot \nabla$ denote the directional derivative in the direction of $\mathbf{u}$. Then utilizing the vector cross-product identity $\nabla \times (\nabla \times \mathbf{A}) = \nabla (\nabla \cdot \mathbf{A}) - \nabla^2 \mathbf{A} $ and noting that $\mathbf{u}$ is a constant vector, we get
$$
\begin{align*}
\mathbf{G}
&= (\nabla g) \times \mathbf{u}, &
\nabla \times \mathbf{F}
&= \partial_{\mathbf{u}} \nabla f - (\nabla^2 f) \mathbf{u}.
\end{align*}
$$
This shows that $\mathbf{G}$ is perpendicular to the term $(\nabla^2 f) \mathbf{u}$, hence
$$
\begin{align*}
(\nabla \times \mathbf{F}) \cdot \mathbf{G}
&= (\partial_{\mathbf{u}} \nabla f) \cdot \mathbf{G}.
\end{align*}
$$
However, since $\partial_{\mathbf{u}}$ behaves just like other partial derivative operators (indeed, partial derivatives themselves are also directional derivatives!), it commutes with other differential operators, yielding
$$
\begin{align*}
(\nabla \times \mathbf{F}) \cdot \mathbf{G}
&= (\nabla \partial_{\mathbf{u}} f) \cdot \mathbf{G} \\
&= \nabla \cdot ((\partial_{\mathbf{u}} f) \mathbf{G}) - (\partial_{\mathbf{u}} f) \underbrace{ (\nabla \cdot \mathbf{G}) }_{=0}.
\end{align*}
$$
In the last step, we utilized the identity $\nabla \cdot (\nabla \times \mathbf{A}) = \mathbf{0} $. Therefore, for any nice bounded region $\Omega \subseteq \mathbb{R}^3$,
$$
\begin{align*}
\int_{\Omega} (\nabla \times \mathbf{F}) \cdot \mathbf{G} \, \mathrm{d}x\mathrm{d}y\mathrm{d}z
&= \int_{\Omega} \nabla \cdot ((\partial_{\mathbf{u}} f) \mathbf{G}) \, \mathrm{d}x\mathrm{d}y\mathrm{d}z \\
&= \int_{\partial \Omega} ((\partial_{\mathbf{u}} f) \mathbf{G}) \cdot \mathrm{d}\mathbf{A} \\
&\to 0 \qquad \text{as $\Omega \uparrow \mathbb{R}^3$},
\end{align*}
$$
assuming $\nabla f$ and $\nabla g$ decay sufficiently fast as $\|\mathbf{x}\| \to \infty$.