Let $f(x)$ be differentiable on $(0,\infty)$ such that $\lim\limits_{x\to\infty}(f(x)+2024f'(x))=2025$. Show that $\lim\limits_{x\to\infty}f(x) = 2025$.
We can see that $f(x) + 2024f'(x) = 2024\left[\dfrac{1}{2024}f(x)+f'(x)\right]\implies\lim\limits_{x\to\infty}\left[\dfrac{1}{2024}f(x)+f'(x)\right] = \dfrac{2025}{2024}$.
Let $g(x) = e^{\frac{x}{2024}}f(x)$. Then $g(x)$ is differentiable on $(0,\infty)$, with $g'(x) = e^{\frac{x}{2024}}\left[\dfrac{1}{2024}f(x)+f'(x)\right]$. Hence, $\lim\limits_{x\to\infty}\dfrac{g'(x)}{e^{\frac{x}{2024}}}=\dfrac{2025}{2024}.$
We need to show that $\lim\limits_{x\to\infty}f(x) = \lim\limits_{x\to\infty}\dfrac{g(x)}{e^{\frac{x}{2024}}} = 2025.$ If I could show that $g(x)\to\infty$ as $x\to\infty$, then by using L'Hopital's Rule, I would be done. But I've been struggling to show that $g(x)\to\infty$. I'd greatly appreciate some help. Thank you!