That was a challenging question. It seems that this holds on any field. Here is a proof:
Let us proceed by induction on $\ell$. The case $\ell=1$ is trivial (and $\ell=2$ is easy).
Suppose that this property is proven up to $\ell-1$.
Let us denote $t$ the maximal index such that $y_t\neq 0$. (We will reduce the proof to the $t-1$ case.) The existence of ${\bf y}$ yields:
$$\begin{cases}
\sum_{i=1}^tm_{k+i-1}y_i=0 & \textrm{if}\ k<\ell\\
\sum_{i=1}^tm_{\ell+i-1}y_i=1 & \textrm{otherwize}\end{cases}$$
But these equalities also gives some coordinates of the images of shifts of ${\bf y}$. Denoting
$${\bf T}=\begin{pmatrix}
1 & 0 & \dots & 0 & y_1 & 0 & \dots & 0\\
0 & 1 & \ddots & \vdots & y_2 & y_1 & & \vdots\\
& & \ddots & 0 & \vdots & y_2 & \ddots & 0\\
& & \ddots & 1 & y_{t-1} & \vdots & \ddots & y_1\\
\vdots & & & 0 & y_t & y_{t-1} & \vdots & y_2\\
& & & & \ddots & \ddots & \ddots & \vdots \\
& & & & & 0 & y_t & y_{t-1}\\
0 & & & \dots & & & 0 & y_t
\end{pmatrix}$$
one has:
$${\bf M}{\bf T}=
\begin{pmatrix}
m_1 & \dots & m_{t-1} & 0 & & 0\\
m_2 & & m_t & 0 & & 0\\
& & & & & \vdots\\
\vdots & & \vdots & \vdots & & 0\\
& & & & \diagup & 1\\
& & & 0 & \diagup & *\\
m_\ell & \dots & m_{\ell+t-1} & 1 & * & *
\end{pmatrix}.$$
Let us denote ${\bf R}={\bf M}{\bf T}$.
Since ${\bf T}$ is upper-triangular, with $\det({\bf T})=y_t^{\ell+1-t}\neq0$, it is invertible and we can give a description of its inverse:
$${\bf T}^{-1}=\begin{pmatrix}
1 & 0 & \dots & 0 & * &\dots & *\\
0 & \ddots & \ddots & \vdots & & & \\
& \ddots & 1 & 0 & \vdots\\
& & 0 & 1 & * & & \vdots\\
\vdots & & & 0 & y_t^{-1} & \ddots & \\
& & & & \ddots & \ddots & *\\
0 & & & \dots & & 0 & y_t^{-1}
\end{pmatrix}.$$
And naturally, one has ${\bf M}={\bf R}{\bf T}^{-1}$.
Developing the determinant of ${\bf R}$ along the last columns (from $t$ to $\ell$), one notice that $\det({\bf R})=(-1)^*\det({\bf M}')$, where:
$${\bf M}'=\begin{pmatrix}
m_1 & m_2 & \dots & m_{t-1}\\
m_2 & m_3 & \diagup & m_t\\
\vdots& \diagup & \diagup & \vdots\\
m_{t-1} & m_t & \dots & m_{2t-1}\\
\end{pmatrix}.$$
So $\det({\bf M})=(-1)^*y_t^{-(\ell+1-t)}\det({\bf M}')$ and ${\bf M}$ is non singular if and only if ${\bf M}'$ is.
It remains to prove that ${\bf M}'$ also satisfies the same two conditions.
-- If we rewrite just the $t-1$ first lines of the product ${\bf M}={\bf R}{\bf T}^{-1}$, one has:
$${\bf M}_{[1,t-1]}=\begin{pmatrix}
m_1 & \dots & m_{t-1} & m_t & \dots & m_\ell\\
m_2 & & m_t & m_{t+1} & & m_{\ell+1}\\
\vdots & & \vdots & \vdots & & \vdots \\
& & & & & \\
m_{t-1} & \dots & m_{2t-1} & m_{2t} & \dots & m_{\ell+t-2}\\
\end{pmatrix}=
\begin{pmatrix}
m_1 & \dots & m_{t-1} & 0 & \dots & 0\\
m_2 & & m_t & 0 & & 0\\
\vdots & & \vdots & \vdots & & \vdots\\
& & & & & \\
m_{t-1} & \dots & m_{2t-1} & 0 & \dots & 0\\
\end{pmatrix}{\bf T}^{-1}.$$
In particular the $t$-th column is a linear combinaison of the columns of ${\bf M}'$. That's the first hypothesis. But it is also the case for all the other columns. Moreover the existence of $\boldsymbol{\omega}$ for ${\bf M}$ assures that the column $\phantom{ }^t(m_{\ell+1},\dots, m_{\ell+t-1})$ is also a linear combinaison of the columns of ${\bf M}'$.
-- Similarly, let us write the lines from 2 to $t$ of the product ${\bf M}={\bf R}{\bf T}^{-1}$:
$${\bf M}_{[2,t]}=\begin{pmatrix}
m_2 & \dots & m_t & m_{t+1} & \dots & m_{\ell+1}\\
m_3 & & m_{t+1} & m_{t+2} & & m_{\ell+2}\\
\vdots & & \vdots & \vdots & & \vdots \\
& & & & & \\
m_t & \dots & m_{2t} & m_{2t+1} & \dots & m_{\ell+t-1}\\
\end{pmatrix}=
\begin{pmatrix}
m_2 & \dots & m_t & 0 & \dots & 0\\
m_3 & & m_{t+1} & 0 & & 0\\
\vdots & & \vdots & \vdots & & \vdots \\
& & & & & 0\\
m_t & \dots & m_{2t} & 0 & \dots 0 & 1\\
\end{pmatrix}{\bf T}^{-1}.$$
Focusing on the last column, one sees that the column $\phantom{ }^t(0,\dots, 0,1)$ is given the non-zero coefficient $y_t^{-1}$ and all the other columns are linear combinations of the columns of ${\bf M}'$, therefore it is a linear combinations of the columns of ${\bf M}'$. That's the second hypothesis.
By induction, ${\bf M}'$ is non singular and so is ${\bf M}$.