If I'm not mistaken, this graph of order 12 should do

g = Graph[GraphData[{"VertexTransitive",{12,30}} ], VertexLabels->Automatic]
The graph automorphism group has order 12 and is given by
{Cycles[{}],Cycles[{{1,2},{3,4},{5,7},{6,12},{8,9},{10,11}}],Cycles[{{1,3},{2,5},{4,9},{6,10},{7,12},{8,11}}],Cycles[{{1,4,8,10,12,5},{2,7,6,11,9,3}}],Cycles[{{1,5,12,10,8,4},{2,3,9,11,6,7}}],Cycles[{{1,6},{2,8},{3,10},{4,7},{5,11},{9,12}}],Cycles[{{1,7},{2,4},{3,8},{5,6},{9,10},{11,12}}],Cycles[{{1,8,12},{2,6,9},{3,7,11},{4,10,5}}],Cycles[{{1,9},{2,12},{3,5},{4,11},{6,8},{7,10}}],Cycles[{{1,10},{2,11},{3,6},{4,12},{5,8},{7,9}}],Cycles[{{1,11},{2,10},{3,12},{4,6},{5,9},{7,8}}],Cycles[{{1,12,8},{2,9,6},{3,11,7},{4,5,10}}]}
The group is isomorphic to the dihedral group of order 12, i.e. the group of symmetries of a regular hexagon - see https://groupprops.subwiki.org/wiki/Dihedral_group:D12.
The usual presentation is $\langle a,x\mid a^{6}=x^{2}=e,xax=a^{-1}\rangle$, here
x=Cycles[{{1,2},{3,4},{5,7},{6,12},{8,9},{10,11}}]
y=Cycles[{{1,3},{2,5},{4,9},{6,10},{7,12},{8,11}}]
(a=PermutationProduct[x,y])==Cycles[{{1,5,12,10,8,4},{2,3,9,11,6,7}}]
PermutationProduct[x,a,x]==PermutationProduct [a,a,a,a,a]