Applying partial fraction decomposition to the summand and invoking Lerch transcendent, OP's formula reduces to:
$$
\begin{align*}
I(\alpha, \beta)
&= \frac{\pi e^{-\alpha\beta}}{2\beta \cos(\pi\beta)}
+ \frac{e^{-\alpha/2}}{2\beta}[\Phi(-e^{-\alpha}, 1, \tfrac{1}{2}+\beta) - \Phi(-e^{-\alpha}, 1, \tfrac{1}{2}-\beta)].
\end{align*} $$
As to my knowledge, this expression cannot be further simplified in terms of more elementary functions (without invkoing other transcendental functions).
Addendum. I was able to replicate OP's formula using an alternative approach. Here, we will assume $\alpha \geq 0$ and $\beta > 0$ WLOG. Using the identity
$$ \frac{1}{\cosh(\pi \xi)} = \int_{-\infty}^{\infty} \frac{e^{2\pi i \xi x}}{\cosh(\pi x)} \, \mathrm{d}x, $$
we can give a convolution-type formula:
$$
\begin{align*}
I(\alpha, \beta)
&= \frac{1}{4\beta} \int_{-\infty}^{\infty} \frac{e^{-\beta|\alpha-x|}}{\cosh(x/2)} \, \mathrm{d}x.
\end{align*} $$
This strongly suggests that we cannot avoid using transcendental functions for finding a closed-form of $I$. Including them into our vocabulary of closed forms, we can proceed as follows:
$$
\begin{align*}
I(\alpha, \beta)
&= \frac{e^{-\alpha\beta}}{2\beta} \int_{0}^{\infty} \frac{\cosh(\beta x)}{\cosh(x/2)} \, \mathrm{d}x
+ \frac{1}{4\beta} \int_{\alpha}^{\infty} \frac{e^{\alpha\beta} e^{-\beta x} - e^{-\alpha\beta} e^{\beta x}}{\cosh(x/2)} \, \mathrm{d}x \\
&= \frac{\pi e^{-\alpha\beta}}{2\beta \cos(\pi\beta)}
+ \frac{1}{4\beta} \int_{\alpha}^{\infty} \frac{e^{\alpha\beta} e^{-\beta x} - e^{-\alpha\beta} e^{\beta x}}{\cosh(x/2)} \, \mathrm{d}x
\end{align*} $$
To further simplify, we introduce an auxiliary function:
$$ J(\alpha, \beta) \triangleq \frac{e^{\alpha\beta}}{2} \int_{\alpha}^{\infty} \frac{e^{-\beta x}}{\cosh(x/2)} \, \mathrm{d}x. $$
Then
$$
\begin{align*}
J(\alpha, \beta)
&= e^{\alpha\beta} \sum_{n=0}^{\infty} (-1)^n \int_{\alpha}^{\infty} e^{-(\beta+n+\frac{1}{2}) x} \, \mathrm{d}x \\
&= e^{-\alpha/2} \sum_{n=0}^{\infty} \frac{(-1)^n e^{-n \alpha}}{\beta+n+\frac{1}{2}} \\
&= e^{-\alpha/2} \Phi(-e^{-\alpha}, 1, \beta+\tfrac{1}{2}),
\end{align*}
$$
where $\Phi$ is the Lerch transcendent. Now using this, $I(\alpha, \beta)$ can be written as:
$$
\begin{align*}
I(\alpha, \beta)
&= \frac{\pi e^{-\alpha\beta}}{2\beta \cos(\pi\beta)}
+ \frac{J(\alpha, \beta) - J(\alpha, -\beta)}{2\beta} \\
&= \frac{\pi e^{-\alpha\beta}}{2\beta \cos(\pi\beta)}
+ \frac{e^{-\alpha/2}}{2\beta}[\Phi(-e^{-\alpha}, 1, \tfrac{1}{2}+\beta) - \Phi(-e^{-\alpha}, 1, \tfrac{1}{2}-\beta)].
\end{align*} $$