-1

Using Fourier-series expansion of $f(\theta) = \theta$ one can show that:

$$ \sum_{n=1}^{\infty} \dfrac{(-1)^{n+1} }{n} \sin (2n) = 1. $$

Is there any other way to prove this result? In particular, is there an elementary way to knock this down?

ILoveMath
  • 10,999

1 Answers1

2

Let $ n\geq k\geq 1 $. We have the following : $$ \int_{\frac{\pi}{2}-1}^{\frac{\pi}{2}}{2\cos{\left(2kx\right)}\,\mathrm{d}x}=\frac{\left(-1\right)^{k}\sin{\left(2k\right)}}{k} $$

Thus : \begin{aligned}\sum_{k=1}^{n}{\frac{\left(-1\right)^{k+1}\sin{\left(2k\right)}}{k}}&=-\int_{\frac{\pi}{2}-1}^{\frac{\pi}{2}}{2\sum_{k=1}^{n}{\cos{\left(2kx\right)}}\,\mathrm{d}x}\\ &=-\int_{\frac{\pi}{2}-1}^{\frac{\pi}{2}}{\left(\frac{\sin{\left(\left(2n+1\right)x\right)}}{\sin{x}}-1\right)\mathrm{d}x}\\ &=1-\int_{\frac{\pi}{2}-1}^{\frac{\pi}{2}}{\csc{x}\sin{\left(\left(2n+1\right)x\right)}\,\mathrm{d}x}\end{aligned}

Now, $ \csc $ is continuous on $ \left[\frac{\pi}{2}-1,\frac{\pi}{2}\right] $, therefore $ \int_{\frac{\pi}{2}-1}^{\frac{\pi}{2}}{\csc{x}\sin{\left(\left(2n+1\right)x\right)}\,\mathrm{d}x}\underset{n\to+\infty}{\longrightarrow}0 $. (by Riemann–Lebesgue lemma)

Hence $\cdots $

CHAMSI
  • 9,222