Solution:
$a = 1+ i \sqrt{6}$
$b = -1+ i \sqrt{6}$
$c = i\sqrt{6}$
Steps:
$a^3 +b^3= c^3$
$a^3 = c^3-b^3$
$a^3 = (c-b)(c^2+bc+b^2)$
if a solution exists then LHS must be a product of two numbers, assuming its the following
$\boxed{a^0\cdot a^3 =(c-b)(c^2+bc+b^2)}$
Assuming $a^0 = c-b$ then $a^3 = c^2+bc+b^2$
$1=c-b$
$c = 1+b$
$a^3 = c^2+bc+b^2$
$a^3 = (1+b)^2+b(1+b)+b^2$
$a^3 = 3b^2+3b+1$
$a^3-1 = 3b^2+3b$ (subtract 1 from both sides)
$(a-1)(a^2+a+1)=3b^2+3b$
$(a-1)(a^2+a+1) = 3b(b+1)$
Assuming $a-1 = b+1$ then $a^2+a+1 = 3b$
$a - 2 = b $ (multiply both sides by 3)
$3a - 6 = 3b $
$a^2+a+1 = 3b$
$a^2+a+1 = 3a - 6$
$a^2-2a+7 = 0$
complex solutions for a
$a = 1+i\sqrt{6}$ and $a = 1-i\sqrt{6}$
lets say $a = 1+i\sqrt{6}$
$a - 2 = b$ and $c = 1+b$
$b = -1+i\sqrt{6}$
$c = i\sqrt{6}$
do the same for the other solution a
If I instead assume the two products of that result in $a^3$ are
$\boxed{a^1\cdot a^2 =(c-b)(c^2+bc+b^2)}$
$a^2 = c^2+bc+b^2$
$a = c - b$ (squaring both sides)
$a^2 = (c-b)^2$
$c^2+bc+b^2 = (c-b)^2$
$c^2+bc+b^2 = c^2-2bc+b^2$
$bc = -2bc$
solutions to this are the trivial ones, at least one of the variables must be zero.
I guess my question is the values found this approach interesting?