$$\cos(x)=\frac{e^{ix}+e^{-ix}}{2}$$
$$\cos((2n+1)x)=\frac{e^{(2n+1)ix}+e^{-(2n+1)ix}}{2}$$
Recall that $a^{2n+1}+ b^{2n+1}= (a+b )\left(\sum\limits_{k=0}^{2n}a^{2n-k}b^{k}\right)$
$$\cos((2n+1)x)=\frac{e^{(2n+1)ix}+e^{-(2n+1)ix}}{2}=\frac{(e^{ix}+e^{-ix})\sum\limits_{k=0}^{2n}e^{ix(2n-2k)}}{2}$$ $$=\cos(x) \left(1+ 2\sum_{k=0}^n (-1)^k\cos(2k)\right)$$
$$I:=\int_0^\pi\left( \frac{\cos((2n+1)x)}{\cos(x)}\right)^2dx=\int_0^\pi\left(1+ 2\sum_{k=0}^n (-1)^k\cos(2kx)\right)^2dx$$
$$=\int_0^\pi 1+ 4 \sum_{k=0}^n (-1)^k\cos(2kx) +4\sum_{k=0}^n\sum_{m=0}^{n} (-1)^{k+m}\cos(2kx)\cos(2mx)dx$$
$$= \pi + 4\int_0^\pi\sum_{k=0}^n (-1)^k\cos(2kx) dx+4\int_0^\pi\sum_{k=0}^n\sum_{m=0}^{n} (-1)^{k+m}\cos(2kx)\cos(2mx)dx$$
$$J_1:=\int_0^\pi\sum_{k=0}^n (-1)^k\cos(2kx)dx= \sum_{k=0}^n \int_0^\pi (-1)^k\cos(2kx)dx = \sum_{k=0}^n\frac{\sin(2k\pi)}{2k}=0$$
$$J_2:=\int_0^\pi\sum_{k=0}^n\sum_{m=0}^{n} (-1)^{k+m}\cos(2kx)\cos(2mx)dx= \sum_{k=0}^n\sum_{m=0}^{n} \int_0^\pi(-1)^{k+m}\cos(2kx)\cos(2mx)dx$$
$$=\sum_{0\le k,m \le n, \ | m\ne k }\left(\int_0^\pi(-1)^{k+m}\cos(2kx)\cos(2mx)dx \right)+ \sum_{j=0}^n\int_0^\pi \cos(2jx)^2 dx $$
$$=\frac 1 4 \sum_{0\le k,m \le n \ | m\ne k } \left( \frac{\sin(2\pi (k-m))}{k-m}+ \frac{\sin(2\pi (k+m))}{k+m}\right)+\sum_{j=0}^n \frac{4\pi j+\sin(4\pi j)}{8 j}$$
$$=\frac{\pi n}{4}$$
$\left( \frac{\sin(2\pi (k-m))}{k-m}+ \frac{\sin(2\pi (k+m))}{k+m}\right) =0$ for all $k\ne m$ and that is because $sin(2N\pi)=0 \ \forall N \in \mathbb{N}$ and this is also the reason why $J_1=0$.
$$I= \pi + 4J_1+4J_2= \pi + 2\pi n = \pi (2n+1) $$