I'm trying to prove this :$$\sum_{k=1}^{m-1} \frac{1}{\sin^2\left({\frac{k\pi}{m}}\right)}=\frac{m^2-1}{3}$$ I find this Answer But I can understand this.
$$\sum_{n \in {Z}} \sum_{k=0}^{m-1}\frac{1}{(x+(k+mn)\pi)^2}=\frac{1}{\sin^2(x)}$$
I know:$$\sum_{n \in {Z}} \frac{1}{(x+n\pi)^2}=\frac{1}{\sin^2(x)}$$
What about this is it wrong?
$$\sum_{n \in {Z}} \sum_{k=0}^{m-1}\frac{1}{(x+(k+mn)\pi)^2}=\sum_{n \in {Z}} \frac{1}{(x+(mn)\pi)^2}+\frac{1}{(x+(1+mn)\pi)^2}+...+\frac{1}{(x+(m-1+mn)\pi)}=\frac{m}{\sin^2(x)}$$