I came across the following problem in my book: $$\lim _{n \rightarrow \infty}\left(\sqrt[n+1]{\Gamma\left(\frac{1}{1}\right) \Gamma\left(\frac{1}{2}\right) \cdots \Gamma\left(\frac{1}{n+1}\right)}-\sqrt[n]{\Gamma\left(\frac{1}{1}\right) \Gamma\left(\frac{1}{2}\right) \cdots \Gamma\left(\frac{1}{n}\right)}\right)=\lim _{n \to \infty}\left(\sqrt[n+1]{\prod_{k=1}^{n+1}\Gamma\left(\frac{1}{k}\right)}-\sqrt[n]{\prod_{k=1}^{n}\Gamma\left(\frac{1}{k}\right)}\right)$$
The given answer is $ \frac{1}{e} $. However, I consistently end up with $0$ when I attempt to solve it. I am unsure where my mistake lies.
My attempt
Gauss' multiplication formula: $$\prod\limits_{k=0}^{n-1} \Gamma\left(x+\frac{k}{n}\right)=(2\pi)^{\frac{n-1}{2}}n^{\frac{1-2nz}{2}}\Gamma(nz) $$
when $z=\frac{1}{n}$ $$\lim\limits_{n\to \infty}\sqrt[n]{\prod_{k=1}^{n}\Gamma\left(\frac{1}{k}\right)}=\lim\limits_{n\to \infty}\sqrt[2n]{\frac{(2\pi)^{n-1}}{n}}=\sqrt{2\pi}$$
so $$\lim _{n \to \infty}\left(\sqrt[n+1]{\prod_{k=1}^{n+1}\Gamma\left(\frac{1}{k}\right)}-\sqrt[n]{\prod_{k=1}^{n}\Gamma\left(\frac{1}{k}\right)}\right)=0$$
I don't know how to proceed in this question since I can't use string formula as the argument of $\Gamma$ don't tend to infinity