1

Let $H=L^2(0,1)$ and $M=\{f\in L^2(0,1): \int_0^1 \frac{f^2(x)}{x^2}dx<+\infty\}$ show that $M$ is closed in $H$ and find $M^{\perp}$.

If $f_n\in M \rightarrow f \in L^2(0,1)$, I have to show that $f \in M$.

I have tried to use Fatou lemma in this way $\exists f_{n_k}\rightarrow f$ pintwise.

So $\int_0^1\frac{f^2}{x^2}\leq\liminf_{n \rightarrow \infty}\int_0^1\frac{f_n^2}{x^2}$ but the limit on the right could depend on n .

I have tried using continuity of norm because if $f_n\rightarrow_{L^2} f$ $\lVert f_n \rVert_{L^2}\rightarrow \lVert f \rVert_{L^2}$ but here I have $\lVert \frac{f_n}{ x} \rVert_{L^2} $.

Mittens
  • 46,352
wela el
  • 153

0 Answers0