Is it possible to calculate the integral $\int^\infty_0\frac{1}{1+\left(x^2+b^2\right)^\mu}dx$ where $\mu>1$ is a real number? I don't have any clue...
Update: Since a closed-form expression is infeasible. I am looking for an infinite sum expression. I tried the technique of the top answer in Prove $\int_0^{\infty}\! \frac{\mathbb{d}x}{1+x^n}=\frac{\pi}{n \sin\frac{\pi}{n}}$ using real analysis techniques only, however after the variable substitution, there will be an extra $\frac{1}{x}$ term compared with the expression in the linked answer, thus infeasible.
Attempt 2: The integral could be rewritten as $\int_0^{\infty} \int_0^{\infty} e^{-\left(1+(x^2+b^2)^\mu\right) t} d t d x$ where we can expand $e^{-t(x^2+b^2)^\mu} = \sum_n \frac{-t(x^2+b^2)^{n\mu}}{n!}$ and we can perform polynomial expansion again. For $x>b$,$(x^2+b^2)^{\mu n}=\sum_{k=0}^{\infty}\binom{\mu n}{k} x^{\mu n-k} b^k$ ,for $x<b$, $(x^2+b^2)^{\mu n}=\sum_{k=0}^{\infty}\binom{\mu n}{k} b^{\mu n-k} x^k$.
Attempt 3: Perform taylor expansion on $\frac{1}{y+(x^2+b^2)^\mu} = \sum_{n=0}^\infty (-1)^n(x^2+b^2)^{-(n+1)\mu}y^n$ let $y=1$ we have $$ \frac{1}{y+(x^2+b^2)^\mu} = \sum_{n=0}^\infty (-1)^n(x^2+b^2)^{-(n+1)\mu} $$ and $(x^2+b^2)^{-c}$ is integrable.