0

Consider the following polynomial $p$ in three variables, a main one called $x$ and two secondary ones $b$ and $c$. The $x^ib^jc^k$ coefficient is p[i][j][k], using zero-indexing; $p$ is symmetric in $b$ and $c$.

p = \
[[[  72,  240,  216,  -96, -264, -144, -24],
  [ 240,  368,   96, -288, -336,  -80],
  [ 216,   96, 1104,  480,   24],
  [ -96, -288,  480,  160],
  [-264, -336,   24],
  [-144,  -80],
  [ -24]],
 [[ -300, -1208, -1872,  -992,   888, 1776, 1200, 416, 84, 8],
  [-1208, -4000, -4288,  2368,  4784, 2144,  192,   0,  8],
  [-1872, -4288, -8112, -6560, -1200, -640, -336, -32],
  [ -992,  2368, -6560, -4288,    32,    0,  -32],
  [  888,  4784, -1200,    32,   504,   48],
  [ 1776,  2144,  -640,     0,    48],
  [ 1200,   192,  -336,   -32],
  [  416,     0,   -32],
  [   84,     8],
  [    8]],
 [[  353,   1859,  4248,  6112,   4034,  -2978, -7248, -4840, -1387, -153],
  [ 1859,  12264, 21224,  3568, -18418, -14680, -4768,  -896,  -153],
  [ 4248,  21224, 42796, 28996,   6736,   4912,  3756,   612],
  [ 6112,   3568, 28996, 30384,   4696,    896,   612],
  [ 4034, -18418,  6736,  4696,  -4738,   -918],
  [-2978, -14680,  4912,   896,   -918],
  [-7248,  -4768,  3756,   612],
  [-4840,   -896,   612],
  [-1387,   -153],
  [ -153]],
 [[    30,   -486,   -1480,  -7320, -17660, -11188,  11224, 17864, 7886, 1130],
  [  -486, -14960,  -36184, -27376,  17228,  30128,  20872,  9136, 1642],
  [ -1480, -36184, -110664, -93560, -17560, -13320, -15576, -3496],
  [ -7320, -27376,  -93560, -92384, -25416,  -9136,  -4520],
  [-17660,  17228,  -17560, -25416,  15380,   5244],
  [-11188,  30128,  -13320,  -9136,   5244],
  [ 11224,  20872,  -15576,  -4520],
  [ 17864,   9136,   -3496],
  [  7886,   1642],
  [  1130]],
 [[  -175,   -561,  -4164,  -5996,  15846,  35946,   7612, -25548, -19119, -3841],
  [  -561,   7800,  23316,  24888,   3498,  -2520, -20556, -27864,  -8001],
  [ -4164,  23316, 126036, 157596,  42660,  24012,  35148,  10116],
  [ -5996,  24888, 157596, 184176,  41292,  27864,  18436],
  [ 15846,   3498,  42660,  41292, -32058, -16710],
  [ 35946,  -2520,  24012,  27864, -16710],
  [  7612, -20556,  35148,  18436],
  [-25548, -27864,  10116],
  [-19119,  -8001],
  [ -3841]],
 [[  -120,   -528,    2040,   14232,   8136, -30024, -31128,  10248, 21072, 6072],
  [  -528,  -3504,   -9720,   12864,  17688, -40560, -24840,  31200, 17400],
  [  2040,  -9720,  -66960, -101136, -23016, -29592, -59904, -18912],
  [ 14232,  12864, -101136, -200736, -28776, -31200, -41568],
  [  8136,  17688,  -23016,  -28776,  77664,  37008],
  [-30024, -40560,  -29592,  -31200,  37008],
  [-31128, -24840,  -59904,  -41568],
  [ 10248,  31200,  -18912],
  [ 21072,  17400],
  [  6072]],
 [[   144,    720,   2412,  -4572,  -15012,   2484, 22212,   5868,  -9756, -4500],
  [   720,   2304,  12636, -15912,  -44748,  24912, 48708, -11304, -17316],
  [  2412,  12636,  41256,  12456,  -67140,  -7668, 69552,  28656],
  [ -4572, -15912,  12456,  82080,  -19836,  11304, 54288],
  [-15012, -44748, -67140, -19836, -119592, -61128],
  [  2484,  24912,  -7668,  11304,  -61128],
  [ 22212,  48708,  69552,  54288],
  [  5868, -11304,  28656],
  [ -9756, -17316],
  [ -4500]],
 [[    0,      0,  -1296,  -1296,  3888,  3888,  -3888,  -3888, 1296, 1296],
  [    0,      0,  -6480,      0, 19440,     0, -19440,      0, 6480],
  [-1296,  -6480, -36288, -10368, 81648, 45360, -44064, -28512],
  [-1296,      0, -10368,      0, 50544,     0, -38880],
  [ 3888,  19440,  81648,  50544, 85536, 59616],
  [ 3888,      0,  45360,      0, 59616],
  [-3888, -19440, -44064, -38880],
  [-3888,      0, -28512],
  [ 1296,   6480],
  [ 1296]],
 [[0, 0,      0,      0,      0,      0,     0,     0, 0, 0],
  [0, 0,      0,      0,      0,      0,     0,     0, 0],
  [0, 0,  11664,  11664, -23328, -23328, 11664, 11664],
  [0, 0,  11664,      0, -23328,      0, 11664],
  [0, 0, -23328, -23328, -23328, -23328],
  [0, 0, -23328,      0, -23328],
  [0, 0,  11664,  11664],
  [0, 0,  11664],
  [0, 0],
  [0]]]

This was the first result I obtained in my ultimately successful quest for exact barycentric coordinates of $X(5394)$. Substituting rational numbers for $b$ and $c$ always seemed to yield a polynomial in $\mathbb Q[x]$ with Galois group 8T39 in the general case, so I strongly suspected that the unsubstituted $p$ – as an element of $\mathbb Q(b,c)[x]$ where $\mathbb Q(b,c)$ is the function field of rational functions in $b$ and $c$ – had the same Galois group. If so, there would be a quartic $q\in\mathbb Q(b,c)[x]$ with root $t$ such that $p$ split into a quadratic and sextic over $\mathbb Q(b,c,t)[x]$.

After despairing for a while I realised that a correct $q$ was out there all the time, and through integer relation and interpolating coefficients I obtained the desired quadratic/sextic split; see the linked answer of mine.

Suppose, however, that I had no lead on what $q$ was. Knowing only $p$, how could I use software to

  • prove that the Galois group of the unsubstituted $p$ is 8T39, and then
  • find a suitable subfield polynomial $q$,

all in reasonable time?

Parcly Taxel
  • 105,904

0 Answers0