In a bounded domain $E$, if $f\in L_u(E)$ then $f\in L_r(E)$ for all $0<r<u$ for $|f|^r\in L_{u/r}(E)$ and so
$$\int_E|f|^r\leq\left(\int_E|f|^u\right)^{r/u}|E|^{1-\tfrac{r}{u}}$$
By Hölder's inequality. In particular, if $s<t<u$
$$\|f\|_t\leq|E|^{(u-t)/t}\|f\|_{L_u(E)}$$
and so,
$$\|f\|_{L_t(E)}\leq \|f\|_{L_s(E)}+|E|^{u/t-1}\|f\|_{L_u(E)}$$
Edit:
My initial boundary were not optimal since they depend on the domain $E$. In fact, the inequality holds even in infinite domains with constants that depend only on $s,t, u$.
Let $\lambda\in(0,1)$ such that $t=\lambda u +(1-\lambda)s$, i.e.
$\lambda=\frac{t-s}{u-s}$.
If $f\in L_s(\mu)\cap L_u(\mu)$, then $|f|^{\lambda u}\in L_{1/\lambda}(\mu)$ and $|f|^{(1-\lambda)s}\in L_{1/(1-\lambda}(\mu)$ and
by Hölder's inequality
$$\int|f|^t=\int|f|^{\lambda u}|f|^{(1-\lambda)s}\leq\Big(\int|f|^u\Big)^{\lambda}\Big(\int|f|^s\Big)^{1-\lambda}$$
Since $\frac{\lambda u}{t}+\frac{(1-\lambda)s}{t}=1$ and $\frac{\lambda u}{t}$, $\frac{(1-\lambda)s}{t}\geq0$, the convexity of the exponential function ($\exp(\alpha y+(1-\alpha)x)\leq \alpha e^x+(1-\alpha)e^{y}$ for $0<\alpha<1$, and $x,y\in\mathbb{R}$) yields
\begin{align}
\|f\|_t&\leq\big(\|f\|_u\big)^{\tfrac{\lambda u}{t}}\big(\|f\|_s\big)^{\tfrac{(1-\lambda)s}{t}}\leq \frac{\lambda u}{t} \|f\|_u +\frac{(1-\lambda)s}{t}\|f\|_s\\
&=\frac{t-s}{u-s}\frac{u}{t} \|f\|_u+\frac{u-t}{u-s}\frac{s}{t}\|f\|_s
\end{align}
\end{align}
When $\mu(E)<\infty$ it suffices to assume $f\in L_u(\mu)$.