Can you help me find $n:n>41$,$\ n=41k$, and $2^x\ -\ 3^y\ =\ n$, where $k, n,x,y\in\mathbb{N}$?
I have checked all odd numbers up to $300,001$ and came up empty-handed.
Can you help me find $n:n>41$,$\ n=41k$, and $2^x\ -\ 3^y\ =\ n$, where $k, n,x,y\in\mathbb{N}$?
I have checked all odd numbers up to $300,001$ and came up empty-handed.