I tried to find generalization for the integral for $a>0$ $$\Omega\left(a\right)=\int_0^{\frac{\pi}{2}} \ln\left(x^2+\ln^2(a \cos x)\right) dx$$ here we can see the value of $\Omega(1)$ ,I tried to solve and found that firstly $$ \Omega\left(a\right)=\Re\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \ln \ln \left(\frac{a}{2} \left(e^{2i x}+1\right) \right)$$ and I used $$ \ln \ln x=\lim_{(y,z)\to (0,0)} \frac{\partial}{\partial z} \frac{\partial^z}{\partial y^z} x^y$$ therefore (the line which I think is true for only $0<a\le1$) $$ \Omega\left(a\right)=\Re \lim_{(y,z)\to (0,0)} \frac{\partial}{\partial z} \frac{\partial^z}{\partial y^z} \left(\frac{a}{2} \right)^y \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(e^{2ix}+1 \right)^y dx$$ and from here we have $$ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(e^{2ix}+1 \right)^y dx=\pi ,\forall y>0$$ So $$ \Omega\left(a\right)=\Re \lim_{(y,z)\to (0,0)} \frac{\partial}{\partial z} \frac{\partial^z}{\partial y^z} \left(\frac{a}{2} \right)^y \pi=\Re \pi \ln \ln \frac{a}{2} $$ but numerically I find that this formula is true for only $0<a\le1$ and then $$\Omega\left(a\right)=\pi \ln \ln \frac{2}{a} , 0<a\le 1 $$ and for special values (for $a> 1$) I got that $$ \Omega\left(\frac{3}{2}\right)=\pi \ln \ln \frac{64}{27} \\ \Omega\left(\frac{5}{2}\right)=\pi \ln \ln \frac{3125}{1024} \\ \Omega\left(2\right)=0$$ So is it possible to find $\Omega\left(a\right)$ for all positive $a$ ?
Addition
from comments a new special value $\Omega(4)=\pi \ln \ln 4$