Question
Lemoine point $L$ of $\triangle ABC$ satisfies $|BL|+|CL|\le\frac2{\sqrt3}|BC|.$
Attempt:
By sine rule, we have $|BL|/|BC|=\sin\angle BCL/\sin\angle BLC$ and $|CL|/|BC|=\sin\angle CBL/\sin\angle BLC$. Thus, the inequality is equivalent to$$\sin\angle BCL+\sin\angle CBL\le\frac2{\sqrt3}\sin\angle BLC$$ Since Lemoine point is the isogonal conjugate of the centroid $G$, we have$$\angle BCL=\angle GCA$$and$$\angle CBL=\angle GBA$$and$$\angle BLC=\pi-(\angle GBA+\angle GCA)$$ Thus, the inequality becomes$$\sin\angle GBA+\sin\angle GCA\le\frac2{\sqrt3}\sin(\angle GBA+\angle GCA)$$
So we eliminated the point $L$ and the inequality is now in terms of the centroid $G$.
By Sum-to-product identity rewrite left-hand side $$ 2 \sin \left(\frac{\angle GBA+\angle GCA}{2}\right) \cos \left(\frac{\angle GBA-\angle GCA}{2}\right) \leq \frac{2 \sin (\angle GBA+\angle GCA)}{\sqrt{3}} $$ By double-angle formula rewrite right-hand side, then factor out $\sin\left(\frac{\angle GBA+\angle GCA}{2}\right)$ $$\sin\left(\frac{\angle GBA+\angle GCA}{2}\right)\left(\cos \left(\frac{\angle GBA+\angle GCA}{2}\right)-\frac{1}{2} \sqrt{3} \cos \left(\frac{\angle GBA-\angle GCA}{2}\right)\right) \geq 0$$ Dividing by $\sin\left(\frac{\angle GBA+\angle GCA}{2}\right)>0$ $$\cos \left(\frac{\angle GBA+\angle GCA}{2}\right)-\frac{1}{2} \sqrt{3} \cos \left(\frac{\angle GBA-\angle GCA}{2}\right)\geq 0$$
But I don't know how to proceed from here. Can someone help me?
