Split up the summand
$$a_n = \frac{(-1)^n \Gamma\left(\frac12+\frac n2\right)}{n\,\Gamma\left(1+\frac n2\right)}$$
into cases of even and odd indices:
$$\begin{cases}\displaystyle a_{2k} = \frac{\Gamma\left(\frac12+k\right)}{2k \, \Gamma(1+k)} = \frac{\sqrt\pi}{2^{2k+1} k} \binom{2k}k \\
\displaystyle a_{2k-1} = -\frac{\Gamma(k)}{(2k-1)\,\Gamma\left(\frac12+k\right)} = -\frac{2^{2k}}{\sqrt\pi \, k(2k-1) \binom{2k}k}\end{cases}$$
For the even case, recall and manipulate the binomial series:
$$\begin{align*}
\frac1{\sqrt{1-x^2}} &= \sum_{k\ge0} \frac1{2^{2k}} \binom{2k}k x^{2k} \\
\implies \frac1{x\sqrt{1-x^2}} &= \frac1x + \sum_{k\ge1} \frac1{2^{2k}} \binom{2k}k x^{2k-1} \\
\implies \sum_{k\ge1} \frac1{2^{2k} k} \binom{2k}k x^{2k} &= C - \log\left(1+\sqrt{1-x^2}\right)
\end{align*}$$
where $C$ is a constant picked up from integrating. Notice that $x=0\implies C=\log2$, so
$$\sum_{k\ge1} a_{2k} x^{2k} = \sqrt\pi \log\frac2{1+\sqrt{1-x^2}} \implies \boxed{\sum_{k\ge1} a_{2k} = \sqrt\pi \log2}$$
For the odd case, use the series expansion of $\arcsin^2x$:
$$\begin{align*}
\arcsin^2x &= \sum_{k\ge1} \frac{2^{2k-1}}{k^2 \binom{2k}k} x^{2k} \\
\implies \frac{\arcsin x}{x\sqrt{1-x^2}} &= \sum_{k\ge1} \frac{2^{2k-1}}{k \binom{2k}k} x^{2k-2} \\
\implies C + \int_0^x \frac{\arcsin t}{t\sqrt{1-t^2}} \, dt &= \sum_{k\ge1} \frac{2^{2k-1}}{k (2k-1) \binom{2k}k} x^{2k-1}
\end{align*}$$
Now $x=0\implies C=0$, and as $x\to1^-$ the integral on the LHS converges to a known representation of Catalan's constant,
$$\int_0^1 \frac{\arcsin t}{t\sqrt{1-t^2}} \, dt \stackrel{t=\tfrac u{\sqrt{1+u^2}}}= \int_0^\infty \frac{\arctan u}{u\sqrt{1+u^2}} \, du = 2G$$
and it follows that
$$\sum_{k\ge1} a_{2k-1} x^{2k-1} = -\frac2{\sqrt\pi} \int_0^x \frac{\arcsin t}{t\sqrt{1-t^2}} \, dt \implies \boxed{\sum_{k\ge1} a_{2k-1} = -\frac{4G}{\sqrt\pi}}$$