3

I'm trying to evaluate the integral $$\int \sqrt{\frac{x^2-a^2}{1+x^2}}\,\mathrm{d}x$$ ($a>0$) in terms of an elliptic integral of the second kind, with modulus $\kappa =1/\sqrt{1+a^2}$. I have tried the usual changes of variable $x=\tan t$, $x=\cot t$, and they lead almost to the canonical form, but with $\sin x$, $\cos x$ in the denominator. Is there any other change of variables worth trying?

2 Answers2

3

Denote $k=\sqrt{1+a^2}$. For $t>a$,

$$\newcommand{\arccot}{\operatorname{arccot}} \begin{align*} I(t) &= \int_a^t \frac{\sqrt{x^2-a^2}}{\sqrt{1+x^2}} \, dx \\ &= t \frac{\sqrt{t^2-a^2}}{\sqrt{1+t^2}} - k^2 \int_a^t \frac{x^2\,dx}{\sqrt{x^2-a^2}\left(1+x^2\right)^{3/2}} & \text{by parts} \\ &= t \frac{\sqrt{t^2-a^2}}{\sqrt{1+t^2}} + k^2 \int_{\operatorname{arccot}a}^{\operatorname{arccot}t} \frac{\csc y-\sin y}{\sqrt{\cot^2y-a^2}} \, dy & x=\cot y \\ &= t \frac{\sqrt{t^2-a^2}}{\sqrt{1+t^2}} - \int_{\operatorname{arccot}t}^{\operatorname{arccot}a} \sqrt{1-k^2\sin^2y} \, dy \\ &\qquad + \left(1-k^2\right) \int_{\operatorname{arccot}t}^{\operatorname{arccot}a} \frac{dy}{\sqrt{1-k^2\sin^2y}} \\ &= t \frac{\sqrt{t^2-a^2}}{\sqrt{1+t^2}} + E\left(\arccot t,k\right) - E\left(\arccot a,k\right) \\ &\qquad + a^2 \left[F\left(\arccot t,k\right) - F\left(\arccot a,k\right)\right] \end{align*}$$

Using the identities listed here we can rewrite $I(t)$ in terms of $\kappa=\dfrac1k$:

$$\begin{align*} F(\arccot t,k) &= \frac1{\sqrt k} F\left(\arcsin\sqrt{\frac k{1+t^2}},\frac1k\right) \\[2ex] E(\arccot t,k) &= \sqrt k \, E\left(\arcsin\sqrt{\frac k{1+t^2}}, \frac1k\right) + \frac{1-k}{\sqrt k} F\left(\arcsin\sqrt{\frac k{1+t^2}}, \frac1k\right) \end{align*}$$

user170231
  • 25,320
1

Define the function $\mathcal{J}$ via the elliptic integral,

$$\mathcal{J}{\left(a,b,z\right)}:=\int_{a}^{z}\mathrm{d}t\,\sqrt{\frac{t^{2}-a^{2}}{t^{2}+b^{2}}};~~~\small{z>a>0\land b>0}.$$


For $z>a>0\land b>0$, we find

$$\begin{align} \mathcal{J}{\left(a,b,z\right)} &=\int_{a}^{z}\mathrm{d}t\,\sqrt{\frac{t^{2}-a^{2}}{t^{2}+b^{2}}}\\ &=\int_{\frac{1}{z}}^{\frac{1}{a}}\mathrm{d}u\,\frac{1}{u^{2}}\sqrt{\frac{1-a^{2}u^{2}}{1+b^{2}u^{2}}};~~~\small{\left[t=\frac{1}{u}\right]}\\ &=\int_{\frac{a}{z}}^{1}\mathrm{d}v\,\frac{a^{2}}{v^{2}}\sqrt{\frac{1-v^{2}}{a^{2}+b^{2}v^{2}}};~~~\small{\left[au=v\right]}\\ &=\int_{\frac{a}{z}}^{1}\mathrm{d}v\,\frac{a^{2}-a^{2}v^{2}}{v^{2}\sqrt{(1-v^{2})(a^{2}+b^{2}v^{2})}}\\ &=\int_{\frac{a}{z}}^{1}\mathrm{d}v\,\frac{a^{2}+b^{2}v^{4}-b^{2}v^{4}-a^{2}v^{2}}{v^{2}\sqrt{(1-v^{2})(a^{2}+b^{2}v^{2})}}\\ &=\int_{\frac{a}{z}}^{1}\mathrm{d}v\,\frac{a^{2}+b^{2}v^{4}}{v^{2}\sqrt{(1-v^{2})(a^{2}+b^{2}v^{2})}}-\int_{\frac{a}{z}}^{1}\mathrm{d}v\,\frac{a^{2}+b^{2}v^{2}}{\sqrt{(1-v^{2})(a^{2}+b^{2}v^{2})}}\\ &=\int_{\frac{a}{z}}^{1}\mathrm{d}v\,\frac{d}{dv}\left[-\frac{\sqrt{(1-v^{2})(a^{2}+b^{2}v^{2})}}{v}\right]-\int_{\frac{a}{z}}^{1}\mathrm{d}v\,\frac{\sqrt{a^{2}+b^{2}v^{2}}}{\sqrt{1-v^{2}}}\\ &=\frac{z}{a}\sqrt{\left(1-\frac{a^{2}}{z^{2}}\right)\left(a^{2}+\frac{a^{2}b^{2}}{z^{2}}\right)}\\ &~~~~~-\int_{\arcsin{\left(\frac{a}{z}\right)}}^{\arcsin{\left(1\right)}}\mathrm{d}\theta\,\frac{\cos{\left(\theta\right)}\sqrt{a^{2}+b^{2}\sin^{2}{\left(\theta\right)}}}{\sqrt{1-\sin^{2}{\left(\theta\right)}}};~~~\small{\left[\arcsin{\left(v\right)}=\theta\right]}\\ &=\frac{\sqrt{\left(z^{2}-a^{2}\right)\left(z^{2}+b^{2}\right)}}{z}-\int_{\arcsin{\left(\frac{a}{z}\right)}}^{\frac{\pi}{2}}\mathrm{d}\theta\,\sqrt{a^{2}+b^{2}\sin^{2}{\left(\theta\right)}}\\ &=\frac{\sqrt{\left(z^{2}-a^{2}\right)\left(z^{2}+b^{2}\right)}}{z}\\ &~~~~~-\int_{0}^{\frac{\pi}{2}-\arcsin{\left(\frac{a}{z}\right)}}\mathrm{d}\varphi\,\sqrt{a^{2}+b^{2}\sin^{2}{\left(\frac{\pi}{2}-\varphi\right)}};~~~\small{\left[\theta=\frac{\pi}{2}-\varphi\right]}\\ &=\frac{\sqrt{\left(z^{2}-a^{2}\right)\left(z^{2}+b^{2}\right)}}{z}-\int_{0}^{\arccos{\left(\frac{a}{z}\right)}}\mathrm{d}\varphi\,\sqrt{a^{2}+b^{2}\cos^{2}{\left(\varphi\right)}}\\ &=\frac{\sqrt{\left(z^{2}-a^{2}\right)\left(z^{2}+b^{2}\right)}}{z}-\int_{0}^{\arccos{\left(\frac{a}{z}\right)}}\mathrm{d}\varphi\,\sqrt{a^{2}+b^{2}-b^{2}\sin^{2}{\left(\varphi\right)}}\\ &=\frac{\sqrt{\left(z^{2}-a^{2}\right)\left(z^{2}+b^{2}\right)}}{z}-\sqrt{a^{2}+b^{2}}\int_{0}^{\arccos{\left(\frac{a}{z}\right)}}\mathrm{d}\varphi\,\sqrt{1-\frac{b^{2}}{a^{2}+b^{2}}\sin^{2}{\left(\varphi\right)}}\\ &=\frac{\sqrt{\left(z^{2}-a^{2}\right)\left(z^{2}+b^{2}\right)}}{z}-\sqrt{a^{2}+b^{2}} E{\left(\arccos{\left(\frac{a}{z}\right)},\frac{b}{\sqrt{a^{2}+b^{2}}}\right)},\\ \end{align}$$

where the incomplete elliptic integral of the second kind $E$ is given here by

$$E{\left(\alpha,\kappa\right)}:=\int_{0}^{\alpha}\mathrm{d}\varphi\,\sqrt{1-\kappa^{2}\sin^{2}{\left(\varphi\right)}};~~~\small{0<\kappa<1\land0<\alpha\le\frac{\pi}{2}}.$$


David H
  • 32,536
  • (+1) Nice and compact! I guess the connection between our results comes down to some version of the identity listed at the bottom of the "incomplete EI of second kind" section but I'm not immediately seeing it. – user170231 Jan 29 '25 at 17:58