Here are some possible answers. I don't know if they help with your/our overall goal yet. (I am gathering various lower- and upperbounds to get as much help for the original problem as possible.)
Lemma 1. (Key Observation).
For $a\in (0, 1)$ and $b \ge 0$, we have
$$ b^{a} = -\frac{1}{\Gamma(-a)}\int_{0}^{\infty} (1 - e^{-bt})t^{-a-1}\, dt. $$
Proof. The integral $\int_{0}^{\infty} (1 - e^{-bt})t^{-a-1}\, dt$ should be shown to converge. To do this, consider the $\int_{1}^{\infty}$ and $\int_{0}^{1}$ parts separately. For $t\ge 1$, we note $0 \le (1 - e^{-bt})t^{-a-1} < t^{-\varepsilon-1}$ where $\varepsilon\in (0, a)$, and so the $\int_{1}^{\infty}$ part is dominated by $\int_{1}^{\infty} t^{-\varepsilon-1}\, dt < \infty$. For $0 < t < 1$, we note $0 \le (1 - e^{-bt}) < bt$, so the $\int_{0}^{1}$ part is dominated by $\int_{0}^{1} bt^{-a}\, dt < \infty$.
Apply integration by parts and then substitution to get
\begin{align*}
\int_{0}^{\infty} (1 - e^{-bt})t^{-a-1}\, dt &= \int_{0}^{\infty} be^{-bt}\cdot \frac{t^{-a}}{-a}\, dt + \left( (1 - e^{-bt})\cdot\frac{t^{-a}}{-a} \right)\Big|_{0}^{\infty} \\
&= -\frac{b}{a}\int_{0}^{\infty} e^{-bt}t^{-a}\, dt \\
&= -\frac{b^{a}}{a}\int_{0}^{\infty} e^{-u}u^{-a}\, du \\
&= -\frac{b^{a}}{a}\Gamma(1-a) \\
&= b^{a}\Gamma(-a).
\end{align*}
This gives us the desired result. $\blacksquare$
Lemma 2. Let $c\le 0$, $n\ge 1$, and $\alpha\in (0, 1)$. Let
$$ u_{n}(c, \alpha) = \sum_{k = 0}^{n}\binom{n}{k}\left(-1\right)^{n - k}\left\vert k - c\right\vert^{\alpha}. $$
Then
$$ u_{n}(c, \alpha) = \frac{1}{\Gamma(-\alpha)}\int_{0}^{\infty} t^{-\alpha-1}e^{ct} (e^{-t} - 1)^{n}\, dt. $$
Proof. Let's restrict ourselves to the case $c \le 0$. Also, ignore the case $n = 0$ (this allows us to say $\sum_{k=0}^{n}\binom{n}{k}(-1)^{n-k} = 0$). Then for $\alpha\in(0, 1)$ we have
\begin{align*}
\sum_{k = 0}^{n}\binom{n}{k}\left(-1\right)^{n - k}\left\vert k - c\right\vert^{\alpha} &= -\frac{1}{\Gamma(-\alpha)}\int_{0}^{\infty} \left[
\sum_{k=0}^{n} \binom{n}{k}(-1)^{n-k}(1 - e^{-(k-c)t})t^{-\alpha-1} \right]\, dt \\
&= -\frac{1}{\Gamma(-\alpha)}\int_{0}^{\infty} t^{-\alpha-1} \left[
\sum_{k=0}^{n} \binom{n}{k}(-1)^{n-k}(1 - e^{-(k-c)t}) \right]\, dt \\
&= \frac{1}{\Gamma(-\alpha)}\int_{0}^{\infty} t^{-\alpha-1}e^{ct} \left[
\sum_{k=0}^{n} \binom{n}{k}(-1)^{n-k}e^{-kt} \right]\, dt \\
&= \frac{1}{\Gamma(-\alpha)}\int_{0}^{\infty} t^{-\alpha-1}e^{ct} (e^{-t} - 1)^{n}\, dt.
\end{align*}
This gives us the desired result. $\blacksquare$
Answer 1: If $c\le 0$, $n \ge 1$, and $\alpha\in (0, 1)$, then
$$ |u_{n}(c, \alpha)| \le \frac{1}{|\Gamma(-\alpha)|}\left( \frac{1}{n-\alpha} + \frac{1}{\alpha} \right). $$
By Lemma 2,
$$ u_{n}(c, \alpha) = \frac{(-1)^{n+1}}{|\Gamma(-\alpha)|}\int_{0}^{\infty} t^{-\alpha-1}e^{ct}(1 - e^{-t})^{n}\, dt $$
so then
$$ |u_{n}(c, \alpha)| = \frac{1}{|\Gamma(-\alpha)|}\int_{0}^{\infty} t^{-\alpha-1}e^{ct}(1 - e^{-t})^{n}\, dt. $$
Since $c\le 0$, we know $e^{ct} \le 1$, so then
$$ |u_{n}(c, \alpha)| \le \frac{1}{|\Gamma(-\alpha)|}\int_{0}^{\infty} t^{-\alpha-1}(1 - e^{-t})^{n}\, dt. $$
Let $I = \int_{0}^{\infty} t^{-\alpha-1}(1 - e^{-t})^{n}\, dt$. We split the integral into $I_{1} = \int_{0}^{1}$ and $I_{2} = \int_{1}^{\infty}$. For $I_{1}$, we invoke the fact that $1 - e^{-t} \le t$ for $t\in (0, 1)$. This gives
$$ I_{1} = \int_{0}^{1} t^{-\alpha-1}(1 - e^{-t})^{n}\, dt \le \int_{0}^{1} t^{n-\alpha-1}\, dt = \frac{1}{n - \alpha}. $$
For $I_{2}$, we invoke the fact that $1 - e^{-t} \le 1$ for $t\in [1, \infty)$. This gives
$$ I_{2} = \int_{1}^{\infty} t^{-\alpha-1}(1 - e^{-t})^{n}\, dt \le \int_{1}^{\infty} t^{-\alpha-1}\, dt = \frac{1}{\alpha}. $$
Putting the two results gives the desired bound.
Answer 2: If $c < 0$, $n\ge 2$, and $\alpha\in (0, 1)$, then
$$ |u_{n}(c, \alpha)| \ge \frac{(-c)^{\alpha}e^{-2}}{2|\Gamma(-\alpha)|}\frac{n^{c}}{(-c\ln n + 1)^{\alpha+1}} $$
and
$$ |u_{n}(c, \alpha)| \le \frac{\delta^{-\alpha}}{|\Gamma(-\alpha)|}\left( \frac{\delta^{n}}{n-\alpha} + \frac{1}{\alpha}\left(1 - \frac{n}{c}\right)^{c}\left(1 - \frac{c}{n}\right)^{-n} \right) $$
where $\delta$ is any real number in $(0, 1)$.
Let's go back to
$$ u_{n}(c, \alpha) = \frac{(-1)^{n+1}}{|\Gamma(-\alpha)|}\int_{0}^{\infty} t^{-\alpha-1}e^{ct}(1 - e^{-t})^{n}\, dt $$
so then
$$ |u_{n}(c, \alpha)| = \frac{1}{|\Gamma(-\alpha)|}\int_{0}^{\infty} t^{-\alpha-1}e^{ct}(1 - e^{-t})^{n}\, dt. $$
Part 1: Lowerbound.
Since the integrand of $I = \int_{0}^{\infty} t^{-\alpha-1}e^{ct} (1 - e^{-t})^{n}\, dt$ is always $\ge 0$, we have $I \ge I_{0}$ where $I_{0} = \int_{\ln n}^{\infty}$. For $t \ge \ln n$, we have $e^{t} \ge n$, so $e^{-t} \le \frac{1}{n}$, and thus $1 - e^{-t} \ge 1 - \frac{1}{n}$. Also, for $n\ge 2$, one can show $(1 - \frac{1}{n})^{n} \ge \frac{e^{-1}}{2}$. Using these facts, we have
$$ I_{0} = \int_{\ln n}^{\infty} t^{-\alpha-1}e^{ct} (1 - e^{-t})^{n}\, dt \ge \left( 1 - \frac{1}{n} \right)^{n} \int_{\ln n}^{\infty} t^{-\alpha-1}e^{ct}\, dt \ge \frac{e^{-1}}{2} \int_{\ln n}^{\infty} t^{-\alpha-1}e^{ct}\, dt. $$
Substitution gives
$$ \int_{\ln n}^{\infty} t^{-\alpha-1}e^{ct}\, dt = \int_{-c\ln n}^{\infty} \left(\frac{u}{-c}\right)^{-\alpha-1}e^{-u}\, du/(-c) = (-c)^{\alpha} \int_{-c\ln n}^{\infty} u^{-\alpha-1}e^{-u}\, du. $$
Then
$$ I_{0} \ge \frac{(-c)^{\alpha}e^{-1}}{2}\int_{-c\ln n}^{\infty} u^{-\alpha-1}e^{-u}\, du \ge \frac{(-c)^{\alpha}e^{-1}}{2}\int_{-c\ln n}^{-c\ln n + 1} u^{-\alpha-1}e^{-u}\, du. $$
By monotonicity arguments,
$$ I_{0} \ge \frac{(-c)^{\alpha}e^{-1}}{2}\cdot\frac{e^{-(-c\ln n + 1)}}{(-c\ln n + 1)^{\alpha+1}} = \frac{(-c)^{\alpha}e^{-2}}{2}\cdot\frac{n^{c}}{(-c\ln n + 1)^{\alpha+1}}. $$
This gives the desired lowerbound.
Part 2: Upperbound.
Split the integral $I = \int_{0}^{\infty} t^{-\alpha-1}e^{ct} (1 - e^{-t})^{n}\, dt$ into $I_{1} = \int_{0}^{\delta}$ and $I_{2} = \int_{\delta}^{\infty}$ for some $0 < \delta < 1$. For $I_{1}$, use $1 - e^{-t} \le t$ and $e^{ct} \le 1$ to get
$$ I_{1} = \int_{0}^{\delta} t^{-\alpha-1}e^{ct} (1 - e^{-t})^{n}\, dt \le \int_{0}^{\delta} t^{n - \alpha - 1}\, dt = \frac{\delta^{n - \alpha}}{n - \alpha}. $$
For $I_{2}$, let $f_{n}(t) = e^{ct}(1 - e^{-t})^{n}$. We seek a maximum of this on $[\delta, \infty)$. We take $df_{n}/dt = 0$ and obtain $t_{0} = \ln\left( 1 - \frac{n}{c} \right)$. Then the maximum of $f_{n}$ is
\begin{align*}
f_{n}(t_{0}) &= \left( 1 - \frac{n}{c} \right)^{c} \left( 1 - \frac{c}{n} \right)^{-n}.
\end{align*}
We use this to get
\begin{align*}
I_{2} = \int_{\delta}^{\infty} t^{-\alpha-1}f_{n}(t)\, dt \le f_{n}(t_{0})\int_{\delta}^{\infty}t^{-\alpha-1}\, dt = f_{n}(t_{0})\frac{\delta^{-\alpha}}{\alpha}.
\end{align*}
Putting these two results for $I_{1}, I_{2}$ together gives us the desired result.
Answer 3: If $c = 0$, $n\ge 8$, and $\alpha\in (0, 1)$, then
$$ \frac{e^{-1}}{2\alpha|\Gamma(-\alpha)|}\frac{1}{(\ln n)^{\alpha}} \le |u_{n}(0, \alpha)| \le \frac{1}{|\Gamma(-\alpha)|}\left( \frac{1}{n - \alpha} + \frac{1}{(\ln n)^{\alpha}}\left( 2^{\alpha} + \frac{2}{\alpha} \right) \right). $$
Again, Lemma 2 tells us
$$ u_{n}(0, \alpha) = \frac{(-1)^{n+1}}{|\Gamma(-\alpha)|}\int_{0}^{\infty} t^{-\alpha-1}(1 - e^{-t})^{n}\, dt $$
so then
$$ |u_{n}(0, \alpha)| = \frac{1}{|\Gamma(-\alpha)|}\int_{0}^{\infty} t^{-\alpha-1}(1 - e^{-t})^{n}\, dt. $$
Part 1: Lowerbound.
Let $I = \int_{0}^{\infty} t^{-\alpha-1}(1 - e^{-t})^{n}\, dt$ and split this into $I_{1} = \int_{0}^{\ln n}$ and $I_{2} = \int_{\ln n}^{\infty}$. For $I_{1}$, we take the trivial lowerbound: $I_{1} \ge 0$. For $I_{2}$, we note that $t\ge \ln n$ implies $(1 - e^{-t})^{n} \ge (1 - \frac{1}{n})^{n}$. For $n\ge 2$, one can show $(1 - \frac{1}{n})^{n} \ge \frac{e^{-1}}{2}$. Thus,
$$ I = I_{1} + I_{2} \ge I_{2} \ge \frac{e^{-1}}{2}\int_{\ln n}^{\infty} t^{-\alpha-1}\, dt = \frac{e^{-1}}{2}\frac{(\ln n)^{-\alpha}}{\alpha}. $$
This gives the desired lowerbound.
Part 2: Upperbound. Let $I = \int_{0}^{\infty} t^{-\alpha-1}(1 - e^{-t})^{n}\, dt$ and split this into $I_{1} = \int_{0}^{1}$, $I_{2} = \int_{1}^{\frac{\ln n}{2}}$, $I_{3} = \int_{\frac{\ln n}{2}}^{\ln n}$, and $I_{4} = \int_{\ln n}^{\infty}$. Here we go!
For $I_{1}$, use $1 - e^{-t} \le t$ to get
$$ I_{1} = \int_{0}^{1} t^{-\alpha-1}(1 - e^{-t})^{n}\, dt \le \int_{0}^{1} t^{n-\alpha-1}\, dt = \frac{1}{n - \alpha}. $$
For $I_{2}$, note that $1\le t\le \frac{\ln n}{2}$ implies $e^{t} \le e^{\frac{1}{2}\ln n} = \sqrt{n}$, so then $e^{-t} \ge \frac{1}{\sqrt{n}}$, and thus $1 - e^{-t}\le 1 - \frac{1}{\sqrt{n}}$. Then
\begin{align*}
I_{2} &= \int_{1}^{\frac{\ln n}{2}} t^{-\alpha-1}(1 - e^{-t})^{n}\, dt \\
&\le \left(1 - \frac{1}{\sqrt{n}}\right)^{n}\int_{1}^{\frac{\ln n}{2}} t^{-\alpha-1}\, dt \\
&= \underbrace{ \left(1 - \frac{1}{\sqrt{n}}\right)^{n} }_{A} \underbrace{ \left( \frac{1}{\alpha} - \frac{\left(\frac{\ln n}{2}\right)^{-\alpha}}{\alpha} \right) }_{B}.
\end{align*}
We will bound $A$ as follows. Start with $\ln\left(1 - \frac{1}{x}\right) \le -\frac{1}{x}$, valid for all $x > 1$. This provides us with $\ln\left(1 - \frac{1}{\sqrt{n}}\right) \le -\frac{1}{\sqrt{n}}$ and so $n\ln\left(1 - \frac{1}{\sqrt{n}}\right) \le -\sqrt{n}$, valid for all $n\ge 2$. Now it is not hard to see that $\sqrt{n} \ge \ln(\ln n)$ for all $n\ge 2$. Thus,
$$ \ln A = n\ln\left(1 - \frac{1}{\sqrt{n}}\right) \le -\sqrt{n} \le -\ln(\ln n) \le -\alpha\ln(\ln n). $$
Exponentiating returns
$$ A \le (\ln n)^{-\alpha}. $$
Bounding $B$ is done easily by taking $B \le \frac{1}{\alpha}$. Together, we find
$$ I_{2} \le AB \le \frac{(\ln n)^{-\alpha}}{\alpha}. $$
For $I_{3}$, we use $t^{-\alpha - 1} \le \left(\frac{\ln n}{2}\right)^{-\alpha-1}$ and $1 - e^{-t} \le 1$ over $\frac{\ln n}{2} < t < \ln n$. This gives
$$ I_{3} = \int_{\frac{\ln n}{2}}^{\ln n} t^{-\alpha-1}(1 - e^{-t})^{n}\, dt \le \left(\frac{\ln n}{2}\right)^{-\alpha - 1}\int_{\frac{\ln n}{2}}^{\ln n} dt = \left(\frac{\ln n}{2}\right)^{-\alpha}. $$
For $I_{4}$, use $1 - e^{-t} \le 1$ over $t > \ln n$ to get
$$ I_{4} = \int_{\ln n}^{\infty} t^{-\alpha-1}(1 - e^{-t})^{n}\, dt \le \int_{\ln n}^{\infty} t^{-\alpha-1}\, dt = \frac{(\ln n)^{-\alpha}}{\alpha}. $$
Putting it all together, we find
$$ I = I_{1} + I_{2} + I_{3} + I_{4} \le \frac{1}{n - \alpha} + \frac{1}{\alpha}\frac{1}{(\ln n)^{\alpha}} + \frac{2^{\alpha}}{(\ln n)^{\alpha}} + \frac{1}{\alpha}\frac{1}{(\ln n)^{\alpha}}. $$
This gives the desired upperbound.
It seems clear that $c > 0$ requires an entirely different approach. I would love to see what that approach would be. If anyone can find lower- and upperbounds for the case $c > 0$, I really want to see what could be done.