For a function $f(t)$ of a single variable, I know the following property of the Dirac delta function:
$\int_{-\infty}^\infty f(t) \delta(t-a) \, dt = f(a).$
But, what if we have a function of two or more variables? Say, we have a function $f(x, t)\in L^1(\mathbb{R^2})$. Then can we have the property:
$\int_{-\infty}^\infty \int_{-\infty}^\infty f(x, t) \delta(x-a) \delta(t-b) \, dx \, dt = f(a, b) ?$
Or, do we have something like a "two-dimensional Dirac delta function,”
$\int_{-\infty}^\infty \int_{-\infty}^\infty f(x, t) \delta(x-a, t-b) \, dx \, dt = f(a, b) ?$