Hint:
$x^3y''(x)+(ax^3+bx^2+cx+d)y(x)=0$
$\dfrac{d^2y}{dx^2}+\left(a+\dfrac{b}{x}+\dfrac{c}{x^2}+\dfrac{d}{x^3}\right)y=0$
Let $r=\dfrac{1}{x}$ ,
Then $\dfrac{dy}{dx}=\dfrac{dy}{dr}\dfrac{dr}{dx}=-\dfrac{1}{x^2}\dfrac{dy}{dr}=-r^2\dfrac{dy}{dr}$
$\dfrac{d^2y}{dx^2}=\dfrac{d}{dx}\left(-r^2\dfrac{dy}{dr}\right)=\dfrac{d}{dr}\left(-r^2\dfrac{dy}{dr}\right)\dfrac{dr}{dx}=\left(-r^2\dfrac{d^2y}{dr^2}-2r\dfrac{dy}{dr}\right)\left(-\dfrac{1}{x^2}\right)=\left(-r^2\dfrac{d^2y}{dr^2}-2r\dfrac{dy}{dr}\right)(-r^2)=r^4\dfrac{d^2y}{dr^2}+2r^3\dfrac{dy}{dr}$
$\therefore r^4\dfrac{d^2y}{dr^2}+2r^3\dfrac{dy}{dr}+(dr^3+cr^2+br+a)y=0$