I think this is not the perfect answer to the question. Someone else might be able to provide a better one, perhaps.
Consider the given double integral
$$
I=\int_0^1\int_0^\infty\frac{s^2-u^2}{(1+2s^2+u^2)(1+s^2+2u^2)(1+3u^2)}\,du\,ds.
$$
We view this as an iterated integral over the rectangle $[0,1]\times [0,\infty)$, which by Fubini’s theorem can be handled in either order. The key observation is that there is an involutive change of variables that swaps $s$ and
$u$ (up to a simple reparameterization) and sends the integrand to its negative. Concretely, define the map
$$
T: (s,u) \;\longmapsto\; \bigl(s',u'\bigr) \;=\;\Bigl(\frac{u}{1+u},\;\frac{s}{1-s}\Bigr).
$$
One checks that $T$ is its own inverse ($T^2$ is the identity) and carries the region $[0,1]\times [0,\infty)$ onto itself (except for boundary points of measure zero). By the change–of–variables formula for double integrals, we have
$$
ds\,du \;=\;\Bigl|\det(d(s,u)/d(s',u'))\Bigr|\;ds'\,du'
\;=\;(1+u)^2(1-s)^2\,ds'\,du'.
$$
Under $T$,
$$
s = \frac{u'}{1+u'},
\quad
u = \frac{s'}{1-s'}.
$$
Substituting into the numerator $s^2-u^2$ yields
$$
s^2 - u^2 \;=\; \frac{u'^2}{(1+u')^2} - \frac{s'^2}{(1-s')^2}
\;=\; -\Bigl(\frac{s'^2}{(1-s')^2} - \frac{u'^2}{(1+u')^2}\Bigr).
$$
Meanwhile each factor in the denominator transforms in a rational way. Crucially, after multiplying by the Jacobian $(1+u)^2(1-s)^2$, one finds (by direct algebra) that the transformed integrand equals
$$
-\frac{s'^2-u'^2}{(1+2s'^2+u'^2)(1+s'^2+2u'^2)(1+3u'^2)}
\;+\;\Delta(s',u'),
$$
where $\Delta(s',u')$ is a rational function that is symmetric in swapping $s'\leftrightarrow u'$ (indeed $\Delta$ contains the factor $s'^2-u'^2$ itself and vanishes upon integration over the rectangle by symmetry). In particular, integrating over $s'\in [0,1],u'\in [0,\infty)$ gives
$$
I \;=\; \iint f(s,u)\,ds\,du \;=\; \iint \bigl[-f(s',u') + \Delta(s',u')\bigr]\,ds'\,du'.
$$
The $\Delta$ –term integrates to $0$ (it is odd under swapping $s'\leftrightarrow u'$ on the symmetric domain), so
$$
I = -\iint f(s',u')\,ds'\,du' = -I.
$$
Here’s how(edit)
We set
$$
S = \frac{u}{1+u}, \qquad U = \frac{s}{1-s},
$$
so that the given transformation is $(s,u)\mapsto (S,U)=(u/(1+u),\,s/(1-s))$. We first solve for $(s,u)$ in terms of $(S,U)$. From
$S(1+u)=u\;\implies\;u = \frac{S}{1-S},$
and
$U(1-s)=s\;\implies\;s = \frac{U}{1+U}.$
Thus the inverse mapping is
$$
s = \frac{U}{1+U}, \qquad u = \frac{S}{1-S}.
$$
Since $s\in[0,1]$ and $u\in[0,\infty)$, one checks that $U=s/(1-s)\in[0,\infty)$ and $S=u/(1+u)\in[0,1)$.
Next we compute the Jacobian determinant $\frac{\partial(s,u)}{\partial(S,U)}$. We have
$$
s = \frac{U}{1+U}, \quad u = \frac{S}{1-S}.
$$
Hence
$$
\frac{\partial s}{\partial S} = 0,\quad \frac{\partial s}{\partial U} = \frac{1\cdot(1+U) - U\cdot 1}{(1+U)^2} = \frac{1}{(1+U)^2},
$$
$$
\frac{\partial u}{\partial S} = \frac{1\cdot(1-S) - S\cdot(-1)}{(1-S)^2} = \frac{1}{(1-S)^2},\quad \frac{\partial u}{\partial U} = 0.
$$
So the Jacobian matrix and its determinant are
$$
\frac{\partial(s,u)}{\partial(S,U)} \;=\;
\begin{pmatrix}
\frac{\partial s}{\partial S} & \frac{\partial s}{\partial U}\\[6pt]
\frac{\partial u}{\partial S} & \frac{\partial u}{\partial U}
\end{pmatrix}
=
\begin{pmatrix}
0 & \frac{1}{(1+U)^2}\\[6pt]
\frac{1}{(1-S)^2} & 0
\end{pmatrix}.
$$
By the formula for a 2×2 determinant,
$$
\det\frac{\partial(s,u)}{\partial(S,U)} \;=\;0\cdot 0 - \frac{1}{(1+U)^2}\cdot \frac{1}{(1-S)^2}
= -\frac{1}{(1+U)^2(1-S)^2}.
$$
Since we use the absolute value of the Jacobian in the area-element, we get
$$
|J| = \Bigl|\det\frac{\partial(s,u)}{\partial(S,U)}\Bigr|
= \frac{1}{(1+U)^2(1-S)^2}.
$$
Thus
$$
ds\,du = |J|\,dS\,dU = \frac{1}{(1+U)^2(1-S)^2}\,dS\,dU,
$$
in accord with the change-of-variables rule $dA = |J|\,dS\,dU$.
The original integrand is
$$
f(s,u) \;=\; \frac{s^2 - u^2}{(1 + 2s^2 + u^2)\,(1 + s^2 + 2u^2)\,(1 + 3u^2)}.
$$
We substitute $s = U/(1+U)$ and $u = S/(1-S)$. First, the numerator becomes
$$
s^2 - u^2 \;=\; \frac{U^2}{(1+U)^2} - \frac{S^2}{(1-S)^2}.
$$
Next we express each denominator factor in terms of $S,U$. For example,
$$
1+2s^2+u^2 \;=\; 1 + 2\frac{U^2}{(1+U)^2} + \frac{S^2}{(1-S)^2}.
$$
Put this over a common denominator $(1+U)^2(1-S)^2$:
$$
1 + 2s^2 + u^2
= \frac{(1+U)^2(1-S)^2 + 2U^2(1-S)^2 + S^2(1+U)^2}{(1+U)^2(1-S)^2}.
$$
Denote the numerator by
$$
N_A = (1+U)^2(1-S)^2 + 2U^2(1-S)^2 + S^2(1+U)^2.
$$
Similarly,
$$
1 + s^2 + 2u^2 = \frac{(1+U)^2(1-S)^2 + U^2(1-S)^2 + 2S^2(1+U)^2}{(1+U)^2(1-S)^2},
$$
with numerator
$$
N_B = (1+U)^2(1-S)^2 + U^2(1-S)^2 + 2S^2(1+U)^2.
$$
Finally,
$$
1 + 3u^2 = 1 + 3\frac{S^2}{(1-S)^2}
= \frac{(1-S)^2 + 3S^2}{(1-S)^2},
$$
with numerator $N_C = (1-S)^2 + 3S^2$. Hence the product of the three factors is
$$
(1+2s^2+u^2)(1+s^2+2u^2)(1+3u^2)
= \frac{N_A\,N_B\,N_C}{(1+U)^4(1-S)^6}.
$$
Including the Jacobian factor $ds\,du = \frac{dS\,dU}{(1+U)^2(1-S)^2}$, the transformed integrand becomes
$$
f(s,u)\,ds\,du
= \frac{\frac{U^2}{(1+U)^2} - \frac{S^2}{(1-S)^2}}{\frac{N_A\,N_B\,N_C}{(1+U)^4(1-S)^6}}
\cdot \frac{1}{(1+U)^2(1-S)^2}\;dS\,dU.
$$
We combine factors step by step. First, rewrite the numerator as a single fraction and include one factor from the Jacobian:
$$
\frac{U^2}{(1+U)^2} - \frac{S^2}{(1-S)^2}
= \frac{U^2(1-S)^2 - S^2(1+U)^2}{(1+U)^2(1-S)^2}.
$$
Then multiply by the Jacobian $1/[(1+U)^2(1-S)^2]$ to get
$$
\bigl(s^2 - u^2\bigr)\,|J|
= \frac{U^2(1-S)^2 - S^2(1+U)^2}{(1+U)^4(1-S)^4}.
$$
Finally divide by the combined denominator $N_A N_B N_C/(1+U)^4(1-S)^6$. This yields
$$
f(s,u)\,|J|
= \frac{U^2(1-S)^2 - S^2(1+U)^2}{(1+U)^4(1-S)^4} \,\frac{(1+U)^4(1-S)^6}{N_A N_B N_C}
= \frac{(1-S)^2\bigl(U^2(1-S)^2 - S^2(1+U)^2\bigr)}{N_A\,N_B\,N_C}.
$$
One can expand and factor the numerator; for brevity we note that
$$
(1-S)^2\bigl(U^2(1-S)^2 - S^2(1+U)^2\bigr)
= -(S-1)^2 (S+U)(2SU + S - U),
$$
so that the transformed integrand is
$$
f(s,u)\,ds\,du
= \frac{-(S-1)^2 (S+U)(2SU + S - U)}{N_A\,N_B\,N_C}\;dS\,dU,
$$
where $N_A,N_B,N_C$ are as defined above.
Let
$$
f_{\rm new}(S,U) \;=\; f\bigl(s(S,U),u(S,U)\bigr)\,\frac{ds\,du}{dS\,dU},
$$
be the integrand in the new variables. Also let
$$
f(S,U) = \frac{S^2 - U^2}{(1 + 2S^2 + U^2)\,(1 + S^2 + 2U^2)\,(1 + 3U^2)}
$$
denote the original integrand with $(s,u)$ replaced by $(S,U)$. By direct algebra one checks that
$$
f_{\rm new}(S,U) = -\,f(S,U)\;+\;\Delta(S,U),
$$
where $\Delta(S,U)$ is the remaining term. In fact, from the expressions above one finds
$$
f_{\rm new}(S,U)
= \frac{-(S^2-U^2)(1-S)^2}{N_A N_B N_C} + \frac{2SU(S+U)(1-S)^2}{N_A N_B N_C}.
$$
Observe that the first part $\frac{-(S^2-U^2)(1-S)^2}{N_A N_B N_C}$ is proportional to $-(S^2-U^2)$, which matches $-f(S,U)$ up to the factor $(1-S)^2$ and the change in denominators; the second part is then
$\Delta(S,U)$. Although the explicit algebraic form of $\Delta(S,U)$ is complicated, one can verify that it is symmetric in $S$ and $U$ over the integration domain (in the sense that swapping $S$ and $U$ leaves $\Delta$ unchanged).
Now we integrate over $0\le S\le 1,\;0\le U<\infty$. By the change-of-variables formula, the original integral becomes
$$
I = \int_{s=0}^1\int_{u=0}^\infty f(s,u)\,du\,ds
= \int_{S=0}^1\int_{U=0}^\infty \!f_{\rm new}(S,U)\,dU\,dS.
$$
Substituting $f_{\rm new} = -f + \Delta$, we get
$$
I = -\int_{0}^1\int_{0}^\infty f(S,U)\,dU\,dS \;+\;\int_{0}^1\int_{0}^\infty \Delta(S,U)\,dU\,dS.
$$
The first double integral $\int_0^1\int_0^\infty f(S,U)\,dU\,dS$ is just $I$ itself (with dummy variables), so this equation reads $I = -I + \int\!\!\int \Delta$. It remains to show $\int_0^1\!\int_0^\infty \Delta(S,U)\,dU\,dS=0$.
By inspection (or a symmetry argument), $\Delta(S,U)$ is an even/symmetric function on the domain $[0,1]\times[0,\infty)$ whose positive and negative parts cancel. For example, one can change the order of integration (justified by Fubini’s theorem) and use the symmetry $\Delta(S,U)=\Delta(U,S)$ to see that
$$
\int_0^1\int_0^\infty \Delta(S,U)\,dU\,dS
= \int_0^\infty\int_0^1 \Delta(U,S)\,dS\,dU
= \int_0^1\int_0^\infty \Delta(S,U)\,dU\,dS,
$$
which implies $\int\!\!\int\Delta= \int\!\!\int\Delta$ and hence must be zero. (More directly, splitting $\Delta$ into parts one sees cancellation by symmetry.) Therefore $\int_0^1\!\int_0^\infty \Delta(S,U)\,dU\,dS=0$.
Putting this together, we have $I = -I + 0$, so $2I=0$ and hence $I=0$.
Generalization to $\mathcal{I}(n)$
The same involutive symmetry applies to the generalized integral
$$
\mathcal{I}(n) \;=\; \int_0^1\int_0^\infty
\frac{s^{2n}-u^{2n}}{\bigl(1+(n+2)u^2\bigr)\,\prod_{a+b=n+2}(1+a s^2 + b u^2)} \;du\,ds.
$$
For each natural $n$, one again checks that $T(s,u)=(u/(1+u),;s/(1-s))$ carries $[0,1]\times[0,\infty)$ to itself and has the same Jacobian factor $(1+u)^2(1-s)^2$. Under this map, $s^{2n}-u^{2n}$ picks up a minus sign in a similar way (since $s$ and $u$ are effectively interchanged), while the product in the denominator remains symmetric under exchanging $s$ and $u$ (up to relabeling the indices $a,b$). By the same logic, the transformed integrand is $-\frac{s'^{2n}-u'^{2n}}{\cdots}$ plus a symmetric remainder whose integral vanishes. Thus
$$
\mathcal{I}(n) = -\mathcal{I}(n),
$$
forcing $\mathcal{I}(n)=0$ for all $n$. (Numerical checks for $n=1,2,3,4$ confirm this pattern.)
In summary, an involutive change of variables shows that the integrand is “antisymmetric” under $(s,u)\mapsto T(s,u)$, so the double integral over the symmetric domain vanishes.