Given a natural number $n$, let $C(n)$ be the minimal $\mathcal{N}_{(\mathcal{P}, \mathcal{L})}$. Observe first that the function $C(n)$ is nondecreasing. Indeed, suppose there are a plane $(\mathcal{P}, \mathcal{L})$ and sets $A \subseteq \mathcal{P}$ and $B \subseteq \mathcal{L}$ such that $\sum_{L\in B}|L\cap A|\ge n$. It is easy to check that we can for each $L\in B$ pick a subset $L'$ of $L\cap A$ such that $\sum_{L\in B}|(L\setminus L')\cap A|=n$. Put $B'=\{L\setminus L':L\in B\}$ and
$$\mathcal{L}'=\mathcal{L}\setminus B\cup\{L\setminus L':L\in B\}\cup\bigcup_{L\in B,\,L'\ne\varnothing}
\{\{x,y\}:x\in L, y\in L'\}.$$ Then $(\mathcal{P}, \mathcal{L'})$ is a plane and
$\sum_{L\in B'}|L\cap A|=n$.
Next, we show that
$$C(n)\ge \frac{3\sqrt[3]{2}}2n^{2/3}+\left(\frac{\sqrt[3]{4}}{4}-1\right)n^{1/3}-0.27\dots.$$
Let $n$ be a fixed natural number and $(A,B)\in \mathcal{N}_{(\mathcal{P}, \mathcal{L})}$. Consider $|A|\times |B|$ axes-aligned rectangle whose rows are indexed by elements of $A$ and columns are indexed by elements of $B$. If $p\in A$, $L\in B$ and $p\in L$ then color the $(p,L)$th cell of the rectangle. Since for any two distinct points in $A$ there is at most one $L\in B$ containing these points, no four centers of distinct colored cells form vertices of an axes-aligned rectangle. According to this
my answer, $2n\le m+\sqrt{D}$, where $m$ is the smallest of the numbers $|A|$ and $|B|$, $k$ is the other of these numbers, and $D=4mk^2-4mk+m^2$. Therefore $m\ge 2n$ or $D\ge (2n-m)^2$, that is $mk^2-mk\ge n^2-mn$. Then $m\ge \frac{n^2}{k^2-k+n}$ and thus $m+k\ge \frac{n^2}{k^2-k+n}+k$. When the minimum of the right-hand side is attained then its derivative with respect to $k$ equals $0$, that is $k=1$ or $k^3-k^2+2kn-2n^2=0$. The latter equation suggests that $k\approx \sqrt[3]{2}n^{2/3}$ and so the minimum of the right-hand side is about $\frac{3\sqrt[3]{2}}2n^{2/3}$, which provides the respective lower bound for $m_{(\mathcal{P}, \mathcal{L})}$ and thus for $C(n)\$
In fact, we can provide the announced concrete lower bound as follows. Let $r=\sqrt[3]{n}$ be the cubic root of $n$. The cubic polynomial $f(k)=k^3-k^2+2kn-2n^2$ has the positive derivative $f'(k)=3k^2-2k+n$, so $f(k)$ increases and so has a unique real root $k_0$. Since
$$f\left(\sqrt[3]{2}r^2\right)=\sqrt[3]{2}r^2\left(2n-\sqrt[3]{2}r^2\right)>0,$$
we have $k_0<\sqrt[3]{2}r^2$. On the other hand, it can be checked (I did it via Mathcad) that
$$f\left(\sqrt[3]{2}r^2-\frac 23r\right)=$$
$$\left(2\sqrt[3]{2}-2\sqrt[3]{4}\right)r^5+
\left(\frac 43\cdot\sqrt[3]{2}-\sqrt[3]{4}-\frac 43\right)r^4+
\left(\frac 43\cdot\sqrt[3]{2}-\frac 8{27}\right)r^3-
\frac 49r^2<0,$$
because $2\sqrt[3]{2}-2\sqrt[3]{4}=-0.65\dots$, $\frac 43\cdot\sqrt[3]{2}-\sqrt[3]{4}-\frac 43=-1.24\dots$, but $\frac 43\cdot\sqrt[3]{2}-\frac 8{27}=1.38\dots$.
So $k_0>\sqrt[3]{2}r^2-\frac 23r$.
Next
$$\frac{n^2}{k_0^2-k_0+n}+k_0=\frac{n^2+k_0^3-k_0^2+nk_0}{k_0^2-k_0+n}=\frac{n^2+2n^2-nk_0}{k_0^2-k_0+n}=$$ $$\frac{3n^2-nk_0}{\frac{2n^2}{k_0}-2n+n}=\frac{3nk_0-k_0^2}{2n-k_0}=k_0\left(1+\frac{n}{2n-k_0}\right).$$
Since when $1\le k\le 2n$ then the function $k\left(1+\frac{n}{2n-k}\right)$ increases
and $k_0>\sqrt[3]{2}r^2-\frac 23r$, using Mathcad we obtain
$$\frac{n^2}{k_0^2-k_0+n}+k_0>\left(\sqrt[3]{2}r^2-\frac 23r\right)
\left(1+\frac{n}{2n-\left(\sqrt[3]{2}r^2-\frac 23r\right)}\right)=$$
$$\frac{3\sqrt[3]{2}}2r^2+\left(\frac{\sqrt[3]{4}}{4}-1\right)r+\frac 14-\frac{\sqrt[3]2}3+
\frac{\left(2-\frac {9\sqrt[3]{4}}2-\frac {9\sqrt[3]{2}}4\right)r+2\sqrt[3]{2}-\frac 32}{18r^2-9\sqrt[3]{2}r+6}.$$
I checked via Mathcad that the last summand has positive derivative when $r\ge 1$, so it increases and thus
$$\frac{n^2}{k_0^2-k_0+n}+k_0>\frac{3\sqrt[3]{2}}2r^2+\left(\frac{\sqrt[3]{4}}{4}-1\right)r+\frac 14-\frac{\sqrt[3]2}3+
\frac{\left(2-\frac {9\sqrt[3]{4}}2-\frac {9\sqrt[3]{2}}4\right)1+2\sqrt[3]{2}-\frac 32}{18\cdot 1-9\sqrt[3]{2}\cdot 1+6}=$$
$$\frac{3\sqrt[3]{2}}2n^{2/3}+\left(\frac{\sqrt[3]{4}}{4}-1\right)n^{1/3}-0.27\dots.$$
And so the latter lower bound holds also for $m_{(\mathcal{P}, \mathcal{L})}$ and so for $C(n)$.
To provide an upper bound for $C(n)$ observe that a Steiner system $S(2,k,m)$ straightforwardly provides a bound $$C\left(\frac{m(m-1)}{k-1}\right)\le m+\frac{m(m-1)}{k(k-1)}.$$
Such a Steiner system exists when $(k,m)$ equals $(q, q^2)$ or $(q+1,q^2+q+1)$, where $q$ is a power of a prime number (unfortunately, we still cannot construct respective Steiner systems for other $q$).
This yields the inequalities $C(q^3+q^2)\le 2q^2+q$ and $C((q^2+q+1)(q+1))\le 2q^2+2q+2$, respectively.
I expect to obtain from them the bound $C(n)\le 2n^{2/3}+O(n^{2/3})$ as follows.
According to [BHP], there exists a natural number $x_0$, which, with enough effort, can be determined effectively, such that for all $x > x_0$ the interval $[x-x^{0.525},x]$ contains prime numbers.
It follows that for all sufficiently big natural $n$ there exists a prime $q$ such that
$n\le q^3+q^2\le ? $. Then
$$C(n)\le C(q^3+q^2)\le 2q^2+q\le ? $$
References
[BHP] R. Baker, G. Harman, J. Pintz, The difference between consecutive primes II, Proc. Lond. Math. Soc., (3) Ser. 83 (2001) 532-562.