I'm wondering whether the formula above is true or not. It looks like an extension of $dl = \sqrt{dx^2+dy^2+dz^2}$ used in line integrals. I don't see it in my textbook, so it is likely wrong since the formula looks too nice to omit. But if it is true, there are some proven implications.
- Assume $dS = \sqrt{dx^2dy^2+dy^2dz^2+dx^2dz^2}$ is true. Prove that $$ dS = \sqrt{ \left( \frac{\partial y}{\partial u} \frac{\partial z}{\partial v} - \frac{\partial z}{\partial u} \frac{\partial y}{\partial v} \right)^2 + \left( \frac{\partial z}{\partial u} \frac{\partial x}{\partial v} - \frac{\partial x}{\partial u} \frac{\partial z}{\partial v} \right)^2 + \left( \frac{\partial x}{\partial u} \frac{\partial y}{\partial v} - \frac{\partial y}{\partial u} \frac{\partial x}{\partial v} \right)^2} dudv\text{.} $$
(The latter formula appears in Gilbert Strang's Calculus (p. 658). I found the book on a MIT's website.)
Let $x = x(u,v)$, $y = y(u,v)$ and $z = z(u,v)$. Then \begin{align*} dS &= \sqrt{dx^2dy^2+dy^2dz^2+dx^2dz^2} \\ &= dudv\sqrt{\frac{dx^2dy^2+dy^2dz^2+dx^2dz^2}{du^2dv^2}} \\ &= dudv\sqrt{\frac{dx^2dy^2}{du^2dv^2} + \frac{dy^2dz^2}{du^2dv^2} + \frac{dx^2dz^2}{du^2dv^2}} \\ &= dudv\sqrt{\left(\frac{dxdy}{dudv}\right)^2 + \left(\frac{dydz}{dudv}\right)^2 + \left(\frac{dxdz}{dudv}\right)^2} \\ \end{align*}
It's known that
$$\frac{dxdy}{dudv} = \left| \frac{D(x,y)}{D(u,v)} \right| = \left| \det \begin{pmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{pmatrix} \right| = \left| \frac{\partial x}{\partial u} \frac{\partial y}{\partial v} - \frac{\partial x}{\partial v} \frac{\partial y}{\partial u} \right|$$
And
$$\frac{dydz}{dudv} = \left| \frac{\partial y}{\partial u} \frac{\partial z}{\partial v} - \frac{\partial y}{\partial v} \frac{\partial z}{\partial u} \right|$$
$$\frac{dxdz}{dudv} = \left| \frac{\partial x}{\partial u} \frac{\partial z}{\partial v} - \frac{\partial x}{\partial v} \frac{\partial z}{\partial u} \right|$$
Substitute these into the equation of (dS) \begin{align*} dS = dudv\sqrt{ \left( \left| \frac{\partial x}{\partial u} \frac{\partial y}{\partial v} - \frac{\partial x}{\partial v} \frac{\partial y}{\partial u} \right| \right)^2 + \left( \left| \frac{\partial y}{\partial u} \frac{\partial z}{\partial v} - \frac{\partial y}{\partial v} \frac{\partial z}{\partial u} \right| \right)^2 + \left( \left| \frac{\partial x}{\partial u} \frac{\partial z}{\partial v} - \frac{\partial x}{\partial v} \frac{\partial z}{\partial u} \right| \right)^2} \end{align*}
Drop the absolute value signs and rearrange. I get $$ dS = \sqrt{ \left( \frac{\partial y}{\partial u} \frac{\partial z}{\partial v} - \frac{\partial z}{\partial u} \frac{\partial y}{\partial v} \right)^2 + \left( \frac{\partial z}{\partial u} \frac{\partial x}{\partial v} - \frac{\partial x}{\partial u} \frac{\partial z}{\partial v} \right)^2 + \left( \frac{\partial x}{\partial u} \frac{\partial y}{\partial v} - \frac{\partial y}{\partial u} \frac{\partial x}{\partial v} \right)^2} dudv \text{ (Q.E.D)} $$
- Assume $dS = \sqrt{dx^2dy^2+dy^2dz^2+dx^2dz^2}$ is true, prove that $dS = dxdy$ in $\mathbb{R}^2$.
In $\mathbb{R}^2$, for any pairs ((x,y)), $z = 0$ and $dz = 0$.
Therefore \begin{align*} dS &= \sqrt{dx^2dy^2+dy^2dz^2+dx^2dz^2} \\ &= \sqrt{dx^2dy^2+dy^20^2+dx^20^2} \\ &= \sqrt{dx^2dy^2} \\ &= dxdy \text{ (Q.E.D).} \end{align*}
There are more examples of implications, but I think two are enough to convey my thoughts.
If the formula is incorrect, can you prove it or provide a counterexample? Or can you point out where I went wrong? If it is correct, how can I prove it? Also, since it doesn't look as obvious as $dl = \sqrt{dx^2+dy^2+dz^2}$, how can I visualize its geometric meaning?