This answer is heavily inspired by the first half of metamorphy's answer to $\{\log n-n(1-na_n)\}$ is convergent for $a_{n+1}=a_n(1-a_n)$ and $0<a_1<1$ (without using asymptotic analysis), which dealt with a similar, slightly simpler problem.
Define $b_n := 1/a_n$. One has $b_{n+1} \to +\infty$ and:
$$\begin{split} b_{n+1}-b_n &= \frac{1 - (1-a_n)(1-2a_n)(1-3a_n)}{a_n(1-a_n)(1-2a_n)(1-3a_n)}\\
&= \frac{6a_n - 11a_n^2 + 6a_n^3}{a_n -6a_n^2 + 11a_n^3 - 6a_n^4}\\
&\xrightarrow[n \to \infty]{} \frac{6}{1} = 6\end{split}$$
Thus, by the SCT: $\displaystyle\frac{b_n}{n} \to 6$, and $na_n \to 1/6$.
Now, set $c_n := b_n - 6n$, so that $c_n = o(n)$, i.e. $c_n /n \to 0$, and:
$$\begin{split} c_{n+1} - c_n &= b_{n+1} - b_n - 6 \\
&= \frac{6a_n - 11a_n^2 + 6a_n^3}{a_n -6a_n^2 + 11a_n^3 - 6a_n^4} - 6\\
&= \frac{25a_n^2 -60a_n^3 + 36a_n^4}{a_n -6a_n^2 + 11a_n^3 - 6a_n^4}\\
&\sim \frac{25a_n^2}{a_n} = 25a_n \sim \frac{25}{6n} \sim \frac{25}{6}(\log(n+1) - \log n)\end{split}$$
A transcription for those like OP who are unfamiliar with Landau notation and thus equivalence (and also a reminder for why this notation is useful):
We got that:
$$\frac{c_{n+1} - c_n}{a_n} \to 25$$
thus, since $\frac{a_n}{1/n} \to \frac{1}{6}$ and $\frac{\log(n+1) - \log n}{1/n} = \frac{\log\left(1 + \frac{1}{n}\right)}{1/n} \to 1$, we have:
$$\frac{c_{n+1} - c_n}{\log(n+1) - \log n} = \frac{c_{n+1} - c_n}{a_n} \cdot \frac{a_n}{1/n} \cdot \frac{1/n}{\log(n+1) - \log n} \xrightarrow[n \to \infty]{} 25 \cdot \frac{1}{6} \cdot 1 = \frac{25}{6}$$
By the SCT, this yields: $\displaystyle\frac{c_n}{\log n} \to 25/6$, therefore, since we have:
$$a_n = \frac{1}{6n + c_n}$$
we get:
$$\begin{split}\frac{n}{\log n}\left(\frac{1}{6} - na_n\right) &= \frac{n}{\log n}\left(\frac{1}{6} - \frac{1}{6 + \frac{c_n}{n}}\right)\\
&= \frac{n}{\log n} \frac{\frac{c_n}{n}}{6\left(6+\frac{c_n}{n}\right)}\\
&= \frac{c_n/\log n}{6(6 + c_n/n)}\\
&\xrightarrow[n \to \infty]{} \frac{25/6}{36} = \frac{25}{216}\end{split}$$