The following are four integrals resembling Ahmed integrals: $$ \begin{aligned} &I_1=\int_{0}^{1} \frac{1}{\left ( 1+y^2 \right )\sqrt{2+y^2} } \arcsin\left ( \sqrt{\frac{2-y^2}{4} } \right ) \text{d}y = \frac{11\pi^2}{288},\\ &I_2=\int_{0}^{1} \frac{1}{\left ( 1+y^2 \right )\sqrt{2+y^2} } \arcsin\left ( \sqrt{\frac{1-y^2}{3} } \right ) \text{d}y = \frac{\pi^2}{8}-\frac{\pi}{2} \arcsin\left ( \frac{1}{\sqrt{3}} \right ),\\ &I_3=\int_{0}^{1} \frac{1}{\left ( 1+y^2 \right )\sqrt{2+y^2} } \arctan\left ( \frac{\sqrt{(1-y^2 )\left ( 2+y^2 \right ) }} {2}\right ) \text{d}y =\pi\arctan\left ( \frac{1}{\sqrt{2} } \right ) -\frac{\pi^2}{6},\\ &I_4=\int_{0}^{1} \frac{1}{\left ( 1+y^2 \right )\sqrt{2+y^2} } \arctan\left ( {\sqrt{\frac{4-y^4}5}}\right ) \text{d}y =\frac\pi2\arctan\left ( \sqrt{\frac35} \right ) -\frac{\pi^2}{15}.\\ \end{aligned} $$ I derived them by some complex tricks, while two alternative approaches sprung up into my mind. We can handle them either by $S(\alpha,\beta,\gamma)$ or @Zacky's approach. For instance, using the latter we obtain an equivalent of $I_2$: $$ \int_{0}^{\infty} \frac{\left ( x^4-2x^2+1 \right ) }{x(1+x^2)(1+2x^2)(1+3x^2)} \ln\left ( \left | \frac{1-x}{1+x} \right | \right ) \text{d}x =\pi\arcsin\left ( \frac{1}{\sqrt{3} } \right ) -\frac{\pi^2}{12} \sim1.1111194977. $$ This monster is actually solvable for the friendly interval, and we may employ residues to have a rapid verfication. Moreover, by borrowing some ideas from this previously posted question, we have $$ \small\int_{0}^{1} \int_{0}^{1} \frac{1}{\left ( 1+x^2 \right )\left ( 1+y^2 \right ) \sqrt{3+x^2+y^2} }\arcsin\left ( \sqrt{\frac{3+x^2+y^2}{5} } \right ) \text{d}x\text{d}y =2\pi\int_{0}^{1} \frac{1}{\left ( 1+x^2 \right ) \sqrt{2+x^2} }\arcsin\left ( \sqrt{\frac{2+x^2}{5} } \right ) \text{d}x -\frac{\pi^2}{2}\arcsin\left ( \frac{1}{\sqrt{5} } \right ) +\frac{\pi^3}{160}, $$ $$ \small\int_{0}^{1} \int_{0}^{1} \frac{1}{\left ( 1+x^2 \right )\left ( 1+y^2 \right ) \sqrt{3+x^2+y^2} }\arcsin\left ( \sqrt{\frac{3+x^2+y^2}{6} } \right ) \text{d}x\text{d}y =\pi\int_{0}^{1} \frac{1}{\left ( 1+x^2 \right ) \sqrt{2+x^2} }\arcsin\left ( \sqrt{\frac{2+x^2}{6} } \right ) \text{d}x -\frac{\pi^2}{5}\arcsin\left ( \frac{1}{\sqrt{6} } \right ) +\frac{\pi^3}{960}. $$
Questions.
- Do we have any alternative proofs and new results of such integrals? Especially with factors $\frac{1}{(1+y^2)\sqrt{2+y^2}}$.
- On whether it is possible to cope with the multiple integration?