Let $f(x)$ be a differentiable function and suppose $\lim_{x\to\infty}{\left(f(x+3)-f(x)\right)} = 2013$. Calculate $\lim_{x\to\infty}\frac{f(x)}{x}.$
My attempt:
The equation $\lim_{x\to\infty} f(x+3)-f(x)=2013$ suggests that the function grows linearly while $x\to \infty$,
$f(x+3) - f(x) \approx f'(x) \cdot 3 = 2013 \implies f'(x) = \frac{2013}{3} = 671$.
So, $f(x) = 671x + C$.
$\lim_{x \to \infty} \frac{f(x)}{x} = 671$
I'm not sure that it's correct. Can you help me with modifying my solution?