Using the identity $\sin(\alpha)-\sin(\beta)=2\sin\left(\dfrac{\alpha-\beta}2\right)\cos\left(\dfrac{\alpha+\beta}2\right)$, we can prove that $\sin(10^{\circ})+\sin(50^{\circ})-\sin(70^{\circ})=0$.
Note that for $a,b,c\in\mathbb{R}$, $a+b+c=0$ implies $a^3+b^3+c^3=3abc$. Hence the expression can be written as follows,
$$\begin{aligned}(\sin10^{\circ})^3+(\sin50^{\circ})^3-(\sin70^{\circ})^3&= -3\sin(10^{\circ})\sin(50^{\circ})\sin(70^{\circ})\\&=-3\cos(20^{\circ})\cos(40^{\circ})\cos(80^{\circ})\end{aligned}$$
Now multiply the expression by $\dfrac{\sin(20^{\circ})}{\sin(20^{\circ})}$. Can you take it from here?