Let $R^d :=k[X_1,..., X_d] $ (resp. $R^e :=k[Y_1,..., Y_e] $) be polynomial rings in $d$ (resp. $e$) indeterminants over a field $k$ (maybe, it's ok if we more generally consider $k$ to be a Noetherian ring).
Let $I=\langle f_1,..., f_n \rangle $ be an ideal (generated by $f_i$'s) of $R^e \otimes_k R^f \cong k[X_1,..., X_e, Y_1,..., Y_f]$.
Consider the canonical inclusion $j:k[X_1,..., X_e] \to k[X_1,..., X_e, Y_1,..., Y_f]$ and the "contraction" of ideal $I^{c(e)}:= k[X_1,..., X_e] \cap I =j^{-1}(I)$.
Is there a well studied theory adressing the question & developing criteria when $I^{c(e)}$ "gives the original ideal $I$ back", ie when $I^{c(e)} \cdot k[X_1,..., X_e, Y_1,..., X_f]=I$?
Geometrically, this corresponds to scenario when for closed subscheme $V(I) \subset \Bbb A_k^{e+d}$ for canon projection $p_e: \Bbb A_k^e \times \Bbb A_k^d \to\Bbb A_k^e$ we get $V(I) =p_e^{-1}(p_e(V(I))$