The inequality is: $$n! > n^{\frac{n}{2}}$$ This is what I've tried:
$n=3 \Rightarrow 6>3^{\frac32}\\$
Assume the inequality holds for some $k\in\Bbb{N}: k! > k^{\frac{k}{2}}$
Prove the inequality holds for $(k+1)! > (k+1)^{\frac{k+1}{2}}$ Then:
$\begin{align*} (k+1)! &> (k+1)^{\frac{k+1}{2}} \\ (k+1) \cdot k! &> (k+1)^{\frac{k+1}{2}} \\ \end{align*}$
Now using the inductive hypothesis:
$\begin{align*} k! &> k^{\frac{k}{2}} \\ (k+1) \cdot k! &> (k+1) \cdot k^{\frac{k}{2}} \end{align*} $
We get:
$\begin{align*}(k+1) \cdot k^{\frac{k}{2}} &> (k+1)^{\frac{k+1}{2}} \end{align*} $
And this is where I got to. Any help is appreciated.