We have a sequence of functions $K_n$, where
$$K_n=F_n+G_n+H_n$$
So, is $$\sup(K_n)\le \sup(F_n)+\sup(G_n)+\sup(H_n)?$$
$$\forall n\ge 1$$ Also, what will the infimum of the sum be like?
We have a sequence of functions $K_n$, where
$$K_n=F_n+G_n+H_n$$
So, is $$\sup(K_n)\le \sup(F_n)+\sup(G_n)+\sup(H_n)?$$
$$\forall n\ge 1$$ Also, what will the infimum of the sum be like?