For $u\left(x, t_{n+1}\right)$ that solves \begin{equation} \frac{u\left(x, t_{n+1}\right)-u\left(x, t_{n}\right)}{\Delta t}=\Delta u\left(x, t_{n+1}\right) \end{equation} with $u\left(x, t_{n+1}\right)=0$ on $\partial \Omega$. I'm trying to show that \begin{equation} \int_{\Omega}\left|\nabla u\left(x, t_{n+1}\right)\right|^{2} \mathrm{~d} x \leq \int_{\Omega}\left|\nabla u\left(x, t_{n}\right)\right|^{2} \mathrm{~d} x \end{equation} My thought was to use the energy method by integrating after multiplying by $u(x,t_{t+1})$: \begin{equation} \int_\Omega \frac{u\left(x, t_{n+1}\right)-u\left(x, t_{n}\right)}{\Delta t} u(x,t_{t+1})= \int_\Omega \Delta u\left(x, t_{n+1}\right) u(x,t_{t+1}) \end{equation} Simplifying the left-hand side and using integration by parts and the boundary condition $u\left(x, t_{n+1}\right) = 0$ on $\partial \Omega$ on the right: \begin{equation} \frac{1}{\Delta t} \left( \int_{\Omega} u\left(x, t_{n+1}\right)^2 \mathrm{d} x - \int_{\Omega} u\left(x, t_{n+1}\right) u\left(x, t_{n}\right) \mathrm{d} x \right) = -\int_{\Omega} \left|\nabla u\left(x, t_{n+1}\right)\right|^2 \mathrm{d} x \end{equation} Rearrange to isolate the gradient term: \begin{equation} \int_{\Omega} \left|\nabla u\left(x, t_{n+1}\right)\right|^2 \mathrm{d} x = -\frac{1}{\Delta t} \left( \int_{\Omega} u\left(x, t_{n+1}\right)^2 \mathrm{d} x - \int_{\Omega} u\left(x, t_{n+1}\right) u\left(x, t_{n}\right) \mathrm{d} x \right) \end{equation} The right-hand side can be rewritten using the Cauchy-Schwarz inequality: \begin{equation} \int_{\Omega} \left|\nabla u\left(x, t_{n+1}\right) \right|^2 \mathrm{d} x \leq -\frac{1}{\Delta t} \left( \int_{\Omega} u\left(x, t_{n+1}\right)^2 \mathrm{d} x - \left( \int_{\Omega} u\left(x, t_{n+1}\right)^2 \mathrm{d} x \right)^{1/2} \left( \int_{\Omega} u\left(x, t_{n}\right)^2 \mathrm{d} x \right)^{1/2} \right) \end{equation} I've tried factoring out the common integral on the right-hand side and using the Poincare inequality, but it's not clear on how to proceed. What's the rest of the way to derive the desired inequality?
Asked
Active
Viewed 49 times
4
usr342678
- 65
-
I think that if expand $u$ in the eigenfunctions to write $u = \sum c_j (t) \varphi_j (x)$, and putting this expansion into the euqaiton that $u$ satisfies to see how $c_j (t)$ varies might work. It should turn out that $c_j (t)$ is related to something like a finite difference scheme. – Ayanamiprpr Oct 26 '24 at 06:05