Seeking to find a closed form of
$$\sum_{k=1}^{2n-1} (-1)^{k-1} k {2n\choose k}^{-1}$$
Recall from MSE
4316307 the
following identity which was proved there: with $1\le k\le n$
$$\frac{1}{k} {n\choose k}^{-1}
= [v^n] \log\frac{1}{1-v} (v-1)^{n-k}.$$
We can re-write this as
$$\frac{1}{n} {n-1\choose k-1}^{-1}
= [v^n] \log\frac{1}{1-v} (v-1)^{n-k}.$$
Using ${2n\choose 2n-k}$ we obtain
$$(2n+1) [v^{2n+1}] \log\frac{1}{1-v}
\sum_{k=1}^{2n-1} (-1)^{k-1} k (v-1)^k
\\ = (2n+1) [v^{2n+1}] \log\frac{1}{1-v}
[z^{2n-1}] \frac{1}{1-z}
\sum_{k\ge 1} (-1)^{k-1} k (v-1)^k z^k
\\ = (2n+1) [v^{2n+1}] \log\frac{1}{1-v}
[z^{2n-1}] \frac{1}{1-z}
\frac{(v-1)z}{(1+(v-1)z)^2}.$$
The contribution from $z$ is
$$\;\underset{z}{\mathrm{res}}\; \frac{1}{z^{2n}}
\frac{1}{1-z} \frac{(v-1)z}{(1+(v-1)z)^2}
\\ = \frac{1}{v-1} \;\underset{z}{\mathrm{res}}\; \frac{1}{z^{2n-1}}
\frac{1}{1-z} \frac{1}{(z+1/(v-1))^2}.$$
Here the residue at infinity vanishes and residues sum to zero, so we
may evaluate with minus the residues at $z=1$ and at $z=-1/(v-1)$,
getting first
$$(2n+1)[v^{2n+1}] \log\frac{1}{1-v} \frac{v-1}{v^2}
= (2n+1)[v^{2n+3}] \log\frac{1}{1-v} (v-1)
\\ = \frac{2n+1}{2n+3} {2n+2\choose 2n+1}^{-1}
= \frac{2n+1}{(2n+2)(2n+3)}.$$
and second
$$\left.\left( \frac{1}{z^{2n-1}} \frac{1}{1-z}
\right)'\right|_{z=-1/(v-1)}
= \left. -\frac{2n-1}{z^{2n}} \frac{1}{1-z}
+ \frac{1}{z^{2n-1}} \frac{1}{(1-z)^2} \right|_{z=-1/(v-1)}.$$
In terms of $v$,
$$(2n+1)[v^{2n+1}] \log\frac{1}{v-1} \frac{1}{v-1}
\\ \times
\left[-(2n-1) (v-1)^{2n} (v-1)/v - (v-1)^{2n-1} (v-1)^2/v^2 \right].$$
This gives two pieces, the first is
$$- (2n+1) (2n-1) [v^{2n+2}] \log\frac{1}{v-1} (v-1)^{2n}
\\ = - (2n+1) (2n-1) \frac{1}{2n+2} {2n+1\choose 1}^{-1}
= - \frac{2n-1}{2n+2}$$
and the second
$$- (2n+1) [v^{2n+3}] \log\frac{1}{v-1} (v-1)^{2n}
\\ = - (2n+1) \frac{1}{2n+3} {2n+2\choose 2}^{-1}
= - 2 \frac{1}{2n+2} \frac{1}{2n+3}.$$
Adjust the sign and collect everything to get
$$\frac{2n+3}{(2n+2)(2n+3)} + \frac{2n-1}{2n+2}
= \frac{2n}{2n+2} = \frac{n}{n+1}.$$