I have to calculate
$$\lim_{x \to +\infty} \left(\dfrac{2x-5}{2x-2}\right)^{4x^2}$$
After having arranged it as
$$\lim_{x \to +\infty} \left(1 - \dfrac{3}{2x-2}\right)^{4x^2}$$
I used $2x-2 = t$ thence
$$\lim_{t\to +\infty} \left(1 - \dfrac{3}{t}\right)^{(t+2)^2}$$
Is now legit to solve it like this?
$$\lim_{t\to +\infty} \left(\underbrace{\left(1-\dfrac{3}{t}\right)^t}_{e^{-3}}\right)^t\cdot \lim_{t\to +\infty}\underbrace{\left(1-\dfrac{3}{t}\right)^{4t}}_{e^{-12}}\cdot \lim_{t\to +\infty}\underbrace{\left(1-\dfrac{3}{t}\right)^4}_{1}$$
Hence the limit is zero.
- Is this legit? Why not, if? I mean the separation into three products of limits.