Number of integer solutions to the equation $x_1+x_2+x_3+x_4=30$ with ranges $x_1\geq 0, 4\leq x_2\leq 7, 2\leq x_3\leq 6, x_4\geq 0$
I tried the method by @N. F. Taussig: Number of integer solutions to the equation $x_1 + x_2 + x_3 = 28$ with ranges
My attempt:
The question reduces to $x_1'+x_2'+x_3'+x_4'=24$ where $x_1'=x_1\geq 0$, $0\leq x_2'=x_2-4\leq 3$, $0\leq x_3'=x_3-2\leq 4$, $x_4'=x_4\geq 0$
Let $3-x_2'=y_2$, $4-x_3'=y_3$ given $x_1'-y_2-y_3+x_4'=17$, $x_i',y_i\geq 0$.
How to proceed further.
Edited my question