The following are equivalent
- $\left(\frac{S_n}n\right)$ converges to $0$ in probability,
- $\lim_{\ell\to\infty}\sum_{k=2^\ell}^{2^{\ell+1}}p_k=0$.
- $\lim_{n\to\infty}\frac 1{n^2}\sum_{k=1}^nk^2p_k=0.$
First, notice that 2. is equivalent to 3.
Indeed, letting $a_n:=\frac 1{n^2}\sum_{k=1}^nk^2p_k$, we observe that if $2^N\leqslant n\leqslant 2^{N+1}$, then $a_{2^N}/4\leqslant a_n\leqslant 4a_{2^{N+1}}$ hence 3. is equivalent to
$$
\tag{*}\lim_{N\to\infty}\frac 1{2^{2N}}\sum_{k=1}^{2^N}k^2p_k=0.
$$
Suppose that 2. holds. Then
$$
\frac 1{2^{2N}}\sum_{k=1}^{2^N}k^2p_k\leqslant\frac 1{2^{2N}}\sum_{\ell=0}^N
\sum_{k=2^\ell+1}^{2^{\ell+1}}k^2p_k\leqslant \frac 4{2^{2N}}\sum_{\ell=0}^N2^{2\ell}
\sum_{k=2^\ell+1}^{2^{\ell+1}} p_k
$$
and we conclude that 3. holds using that if $\delta_\ell\to 0$, so does $2^{-2N}\sum_{\ell=1}^N 2^{2\ell}\delta_\ell$. Conversely, assume that 3. (hence (*)) holds. Since,
$$
\frac 1{2^{2N}}\sum_{k=1}^{2^N}k^2p_k
\geqslant \frac 1{2^{2N}}\sum_{k=2^{N-1}}^{2^N}k^2p_k\geqslant\frac 14
\sum_{k=2^{N-1}}^{2^N} p_k
$$
we get 2..
Assume that 3. holds. By computing $\mathbb E\left[S_n^2\right]$, we find, by independence and the fact that the $X_j$ are centered, that
$$
\mathbb E\left[\left(\frac{S_n}n\right)^2\right]=\frac 1{n^2}\sum_{k=1}^nk^2p_k
$$
We deduce from condition 3. that $S_n/n\to 0$ in $L^2$ hence in probability.
Assume that $S_n/n\to 0$ in probability. By Levy inequality, independence and symmetry of $X_j$, we derive that $N^{-1}\max_{1\leqslant n\leqslant N} \lvert S_n\rvert\to 0$ in probability. Therefore, denoting $S_0=0$,
$$\frac1N\max_{1\leqslant n\leqslant N}\lvert X_n\vert=\frac1N\max_{1\leqslant n\leqslant N}\lvert S_n-S_{n-1}\vert\leqslant \frac 2{N}\max_{1\leqslant n\leqslant N} \lvert S_n\rvert$$
hence $N^{-1}\max_{1\leqslant n\leqslant N} \lvert X_n\rvert\to 0$ in probability. In particular,
we get that
$$
\frac 1{2^{\ell+1}}\max_{2^\ell+1\leqslant k\leqslant 2^{\ell+1}}\lvert X_k\rvert\to 0\mbox{ in probability}.
$$
Let $A_k:=\{X_k=k\}\cup\{X_k=-k\}$. Since for $2^\ell+1\leqslant k\leqslant 2^\ell$, $\lvert X_k\rvert\geqslant k\mathbf{1}_{A_k}\geqslant 2^\ell\mathbf{1}_{A_k} $, we infer that $$
\lim_{\ell\to\infty}\mathbb P\left(\bigcup_{k=2^\ell+1}^{2^{\ell+1}}A_k\right)=0.
$$
By independence between the events $(A_k)$, we get that
$$
\lim_{\ell\to\infty}\prod_{k=2^\ell+1}^{2^{\ell+1}}(1-p_k)=1
$$
Using $1-t\leqslant e^{-t}$, we get that
$$1\leqslant \limsup_{\ell\to\infty}\prod_{k=2^\ell+1}^{2^{\ell+1}}e^{-p_k}\leqslant 1 $$
hence 2. is satisfied.
Also, the following are equivalent
- $(S_n/n)$ converges to $0$ almost surely.
- $\sum_\ell p_\ell<\infty$.
Indeed, suppose that 2. holds. Using Chebychev's then Doob's inequality, we find that
$$
\mathbb P\left(\max_{1\leqslant n\leqslant 2^N}\left\lvert \sum_{k=1}^n X_k\right\rvert>2^{N}\varepsilon\right)\leqslant \frac 1{2^{2N}\varepsilon^2}\mathbb E\left[\max_{1\leqslant n\leqslant 2^N}\left\lvert \sum_{k=1}^n X_k\right\rvert^2\right]\leqslant
\frac 4{2^{2N}\varepsilon^2}\sum_{k=1}^{2^N}k^2p_k,
$$
which shows, after having summed over $N$ and switched the sums, that
$2^{-N}\max_{1\leqslant n\leqslant 2^N}\left\lvert \sum_{k=1}^n X_k\right\rvert\to 0$ almost surely.
Conversely, if $S_n/n\to 0$ almost surely, then $X_n/n\to 0$ almost surely and we conclude by the second Borel-Cantelli's lemma that 2. holds.