We have that
$$\log\left[\left(\prod_{k=1}^{n-1}\cos\left(\frac{k\pi}{2n}\right)\right)^{\frac{1}{n}}\right]=\frac1n\sum_{k=1}^{n-1}\log\left(\cos\left(\frac{\pi}{2}\frac{k}{n}\right)\right)=\int_0^1 \log\left(\cos\left(\frac \pi 2 x\right)\right)dx$$
which, as noticed in the comments, by $u=\frac{\pi}2x$ reduces to the well-known integral
$$\boxed{L=\frac 2\pi \int_0^{\frac \pi 2} \log\left(\cos u\right)du=\log \frac12}$$
As an alternative solution, we can avoid integrals using that by symmetry
$$C_n=\sum_{k=1}^{n-1}\log\left(\cos\left(\frac{\pi}{2}\frac{k}{n}\right)\right)=\sum_{k=1}^{n-1}\log\left(\sin\left(\frac{\pi}{2}\frac{k}{n}\right)\right)=S_n$$
and then
$$2\frac{C_n}n=\frac{C_n}n+\frac{S_n}n=\log\frac12+\frac1n\sum_{k=1}^{n-1}\log\left(\sin\left(\pi\frac{k}{n}\right)\right)$$
and assuming wlog $n=2m$
$$\frac1n\sum_{k=1}^{n-1}\log\left(\sin\left(\pi\frac{k}{n}\right)\right)=\frac1{2m}\sum_{k=1}^{2m-1}\log\left(\sin\left(\frac \pi 2\frac{k}{m}\right)\right)=\frac1m\sum_{k=1}^{m-1}\log\left(\sin\left(\frac \pi 2\frac{k}{m}\right)\right)=\frac{C_m}m$$
finally by $\frac{C_n}n \to L$ we have
$$2L=\log \frac12 + L \implies \boxed{L=\log \frac12}$$