3

Calculate

$$\lim\limits_{n\to\infty}\left(\prod_{k=1}^{n-1}\cos\left(\frac{k\pi}{2n}\right)\right)^{\frac{1}{n}}$$

The following words are my answer:

$$=\exp\left(\lim{\sum{\ln\left(\cos\left(\frac{k\pi}{2n}\right)\right)^\frac{1}{n}}}\right)=\exp\left(\int_{0}^{1}{\ln\left(\cos\left(\frac{\pi}{2}x\right)\right)}\right)$$

But I can not solve this improper integral. Is there any idea about solving integral like this?

What is more, how to do it without using the definition of integral?

user
  • 162,563

1 Answers1

3

We have that

$$\log\left[\left(\prod_{k=1}^{n-1}\cos\left(\frac{k\pi}{2n}\right)\right)^{\frac{1}{n}}\right]=\frac1n\sum_{k=1}^{n-1}\log\left(\cos\left(\frac{\pi}{2}\frac{k}{n}\right)\right)=\int_0^1 \log\left(\cos\left(\frac \pi 2 x\right)\right)dx$$

which, as noticed in the comments, by $u=\frac{\pi}2x$ reduces to the well-known integral

$$\boxed{L=\frac 2\pi \int_0^{\frac \pi 2} \log\left(\cos u\right)du=\log \frac12}$$


As an alternative solution, we can avoid integrals using that by symmetry

$$C_n=\sum_{k=1}^{n-1}\log\left(\cos\left(\frac{\pi}{2}\frac{k}{n}\right)\right)=\sum_{k=1}^{n-1}\log\left(\sin\left(\frac{\pi}{2}\frac{k}{n}\right)\right)=S_n$$

and then

$$2\frac{C_n}n=\frac{C_n}n+\frac{S_n}n=\log\frac12+\frac1n\sum_{k=1}^{n-1}\log\left(\sin\left(\pi\frac{k}{n}\right)\right)$$

and assuming wlog $n=2m$

$$\frac1n\sum_{k=1}^{n-1}\log\left(\sin\left(\pi\frac{k}{n}\right)\right)=\frac1{2m}\sum_{k=1}^{2m-1}\log\left(\sin\left(\frac \pi 2\frac{k}{m}\right)\right)=\frac1m\sum_{k=1}^{m-1}\log\left(\sin\left(\frac \pi 2\frac{k}{m}\right)\right)=\frac{C_m}m$$

finally by $\frac{C_n}n \to L$ we have

$$2L=\log \frac12 + L \implies \boxed{L=\log \frac12}$$

user
  • 162,563