This Question comes from Measure Theory, Probability, and Stochastic Processes by Jean-François Le Gall ,page 72 Theorem 4.8
Background:Let $(E,d)$ be a metric space with metric $d$
Notation : (1)Let $A\subset E,x\in E$,define $$d(x,A):=\inf_{z\in A}d(x,z)$$(2)$$d(x,A)\wedge 1:=\min\{d(x,A),1\}$$(3)A function $f:E\to \mathbb R$ is said to be Lipschitz if$$\exists K\ge 0,\forall x,y\in E ,\quad|f(x)-f(y)|\leq K d(x,y).$$Question:Let $O$ be an open set in the metric space i find it hard to show the function $d(x,O^c)\wedge 1$ is Lipschitz,or more precisely:$$\exists L\ge0,\forall x,y\in X,|d(x,O^c)\wedge 1-d(y,O^c)\wedge 1|\le Ld(x,y)$$The condition that $O$ is an open set may be useful,but i do not know how to use it yet.
My attempt to the question:i know that$$|d(x,O^c)\wedge 1-d(y,O^c)\wedge 1|\le |d(x,O^c)-d(y,O^c)|$$Although $|d(x,z)-d(y,z)|\le d(x,y),\forall z\in O^c$can be showed by triangle inequality,i am stuck to show that$$|d(x,O^c)-d(y,O^c)|\le d(x,y)$$