This is my work so far
$$\lim_{x \to \infty} x^{\left ( -\frac{1}{x} \right )}= \lim_{x \to \infty}\frac{1}{x^\left({\frac{1}{x}} \right)}=\lim_{x \to \infty}\frac{1}{e^{\ln x^\left({\frac{1}{x}}\right)}}=\lim_{x \to \infty}\frac{1}{e^{\frac{\ln x}{x}}}$$
Now what's the next step?
I'm stuck and I don't know what to do! I need to solve this without differentiation! Can someone help me?