1

To show: Sequence $\langle u_n\rangle$ is convergent and converges to zero,where $u_n=\frac{1}{1n} + \frac{1}{2(n-1)} +\frac{1}{3(n-2)}+ \dots +\frac{1}{n1}$

Using Rabee's test I have shown that the sequence $\langle u_n\rangle$ is convergent.
Now to find the limit: $\frac{1}{nn} + \frac{1}{nn} +\frac{1}{nn}+ \dots +\frac{1}{nn}\le \frac{1}{1n} + \frac{1}{2(n-1)} +\frac{1}{3(n-2)}+ \dots +\frac{1}{n1}$
$\implies\frac{1}{n^2} + \frac{1}{n^2} +\frac{1}{n^2}+ \dots +\frac{1}{n^2}\le \frac{1}{1n} + \frac{1}{2(n-1)} +\frac{1}{3(n-2)}+ \dots +\frac{1}{n1}$
$\implies\frac{1}{n}\le \frac{1}{1n} + \frac{1}{2(n-1)} +\frac{1}{3(n-2)}+ \dots +\frac{1}{n1}$
I am unable to find an upper bound,which converges to zero.
Kindly help me. Also,if there are different methods then kindly share.

Alma Arjuna
  • 6,521
San Ti
  • 391

2 Answers2

2

$$\frac{1}{x(x-y)}=\frac{1}{y}\left(\frac{1}{x-y}-\frac{1}{x}\right)$$

$$u_n=\sum \limits_{k=0}^ {n-1}\frac{1}{(k+1)(n-k)} =\sum \limits_{k=0}^ {n-1}\frac{1}{(k+1)((n+1)-(k+1))}$$

$$=\frac{1}{n+1}\left(\sum \limits_{k=0}^ {n-1}\frac{1}{(k+1)}+\sum \limits_{k=0}^ {n-1}\frac{1}{(n-k)}\right)$$

$$= \frac{1}{n+1}\left(\sum \limits_{k=0}^ {n-1}\frac{1}{(k+1)}+\sum \limits_{m=0}^ {n-1}\frac{1}{(1+m) )}\right)$$

$$=\frac{2}{n+1}\sum_{k=1}^n \frac{1}{k}=$$

$$\lim\limits_{n \to \infty } u_n =\lim\limits_{n \to \infty } \frac{2}{n+1}\sum_{k=1}^n \frac{1}{k} =\lim\limits_{n \to \infty } \frac{2\ln(n)}{n} $$ By this or This

pie
  • 8,483
1

$$\frac{1}{n}\le u_n=\frac{2}{n+1}\sum_{k=1}^n \frac{1}{k}\le\frac{2}{n}\sum_{k=1}^n \frac{1}{k}$$Now,let $a_n=\frac{1}{n}$ and $b_n=\frac{2}{n}\sum_{k=1}^n \frac{1}{k}$.
Then,$\langle a_n\rangle\rightarrow 0$ and by Cauchy's first theorem on limits $\langle b_n\rangle\rightarrow 0$.
Thus,by Squeeze theorem $\langle u_n\rangle\rightarrow 0$