Starting with $\int_{0}^{\pi}{e^{2\cos(x)}\, dx}$ we have:
$$\begin{align} \int_{0}^{\pi}{e^{2\cos(x)}\, dx} &= \int_{0}^{\pi}{\sum_{k=0}^{\infty}{\frac{[2\cos(x)]^k}{k!}}\, dx}\\ &= \sum_{k=0}^{\infty}{\frac{2^k}{k!}\int_{0}^{\pi}{\cos^k(x)\, dx}} \end{align}$$
I think the sum/integral interchange is valid. Continuing with the integral we see that for $k=2n+1, n\in\mathbb{N}$ $$\int_{0}^{\pi}{\cos^{2n+1}(x)\, dx}=\int_{-\pi}^{\pi}{\cos^{2n+1}(x)\, dx}=0$$
That leaves the $k=2n$ case, let’s start by defining:
$$I_{2n}:=\int_{0}^{\pi}{\cos^{2n}(x)\, dx}$$
Continuing:
$$\int_{0}^{\pi}{\cos^{2n}(x)\, dx}=\int_{0}^{\pi}{\cos^{2n-1}(x)\cos(x)\, dx}$$
(IBP, first terms go to zero and the integral is left over)
$$\begin{align}\int_{0}^{\pi}{\cos^{2n-1}(x)\cos(x)\, dx}&=(2n-1)\int_{0}^{\pi}{\cos^{2n}(x)+(2n-3)\sin^2(x)\cos^{2n-2}(x)\, dx}\\&=(2n-1)\int_{0}^{\pi}{\cos^{2n}(x)+(2n-3)(1-\cos^2(x))\cos^{2n-2}(x)}\\&=(2n-1)\int_{0}^{\pi}{\cos^{2n}(x)+(2n-3)[\cos^{2n-2}(x)-\cos^{2n}(x)]\, dx}\\&=(2n-1)\int_{0}^{\pi}{(4-2n)\cos^{2n}(x)+(2n-3)\cos^{2n-2}(x)\, dx}\\&=(2n-1)(4-2n)\int_{0}^{\pi}{\cos^{2n}(x)\, dx}+(2n-1)(2n-3)\int_{0}^{\pi}{\cos^{2n-2}(x)\, dx}\\&=(2n-1)(4-2n)I_{2n}+(2n-1)(2n-3)I_{2n-2}\\&=-2(2n-1)(n-2)+(2n-1)(2n-3)I_{2n-2}\end{align}$$
In the end we have, assuming everything is correct here:
$$\begin{align}I_{2n} &= -2(2n-1)(n-1)I_{2n}+(2n-1)(2n-3)I_{2n-2}\\\implies I_{2n}&=\frac{(2n-1)(2n-3)}{4n^2-6n+3}I_{2n-2}\end{align}$$
But this doesn’t work for $I_2$ for example, so something must be wrong here.