We begin by the following definition.
Definition: Let $d \in \mathbb{N}$. The $(2d + 1)$-dimensional Heisenberg group over the ring of $p$-adic integers $\mathbb{Z}_p$, denoted by $\mathbb{H}_d(\mathbb{Z}_p)$, is given by $$\mathbb{H}_d(\mathbb{Z}_p) = \left\{ \begin{bmatrix} 1 & x^t & z \\ 0 & I_d & y \\ 0 & 0 & 1 \end{bmatrix} \in \mathrm{GL}_{d+2}(\mathbb{Z}_p) : x, y \in \mathbb{Z}_p^d, \, z \in \mathbb{Z}_p \right\},$$ where $I_d$ is the $d \times d$ identity matrix, and $x^t$ denotes the transpose of the vector $x$.
For each $n \in \mathbb{N}$, we define the subgroup $\mathbb{H}_d(p^n\mathbb{Z}_p)$ of $\mathbb{H}_d(\mathbb{Z}_p)$ by $$\mathbb{H}_d(p^n\mathbb{Z}_p) = \left\{ \begin{bmatrix} 1 & x^t & z \\ 0 & I_d & y \\ 0 & 0 & 1 \end{bmatrix} \in \mathrm{GL}_{d+2}(\mathbb{Z}_p) : x, y \in (p^n \mathbb{Z}_p)^d, \, z \in p^n \mathbb{Z}_p \right\}.$$
Then my question is the following:
Question: How can one show that $\mathbb{H}_d(\mathbb{Z}_p)/{\mathbb{H}_d({p^n\mathbb{Z}_p})}$ is isomorphic to $\mathbb{H}_d(\mathbb{F}_{p^n})$ as groups, where $\mathbb{F}_{p^n}$ is the finite field of order $p^n$?
The above isomorphism mentioned in the question is mentioned without any proof in a recent preprint by J.P. Velasquez-Rodriguez (section 3.1 on page 9). To me it seems like the natural projection map $\pi:\mathbb{H}_d(\mathbb{Z}_p)\rightarrow \mathbb{H}_d\left(\mathbb{Z}_p/{p^n\mathbb{Z}_p}\right) = \mathbb{H}_d\left(\mathbb{Z}/{p^n\mathbb{Z}}\right)$ induces an isomorphism between $\mathbb{H}_d(\mathbb{Z}_p)/{\mathbb{H}_d({p^n\mathbb{Z}_p})}$ and $\mathbb{H}_d\left(\mathbb{Z}/{p^n\mathbb{Z}}\right)$, but I am not sure whether I am wrong or how to settle the above-mentioned problem. Thanks in advance for any relevant help or suggestion in this regard.