First we note that the equation
\begin{equation}
\log\left(x\right)-x+1/x=y
\end{equation}
it comes from the equation
\begin{equation}
(*)\,x-2\sinh\left(x\right)=y
\end{equation}
taking the change of variable $x\rightarrow e^{x}$. We will work with this last one.
Transforming the equation with the change of variable
$x\rightarrow\textrm{arccsch}\left(iz\right)$, we obtain the equation
\begin{equation}
\textrm{arccsc}\left(z\right)-\frac{2}{z}-iy=0
\end{equation}
Defining the function $f(z)=\textrm{arccsch}\left(z\right)-\frac{2}{z}-iy$
and applying the Burniston-Siewert method to solve transcendental
equations to this equation we obtain
\begin{equation}
z=-i\left(\frac{1}{t}+m\right)
\end{equation}
where
\begin{equation}
m=\frac{1}{2\pi}{\displaystyle \int\limits_{0}^{1}\log\left(\frac{\left(\pi t-4\right)^{2}+4t^{2}\left(\textrm{arcsech}\left(t\right)+y\right)^{2}}{\left(\pi t-4\right)^{2}+4t^{2}\left(\textrm{arcsech}\left(t\right)-y\right)^{2}}\right)}\,dt
\end{equation}
Therefore the solution to equation (*) is
\begin{equation}
x=y-\frac{2}{\frac{1}{y}+m}
\end{equation}
Retaking the change of variable for the original equation and placing everything in a single expression the inverse function of $L(x)=\log\left(x\right)-x+1/x$ is
\begin{equation}
L^{-1}\left(x\right)=\exp\left[x-2\left[\frac{1}{x}+\frac{1}{2\pi}{\displaystyle \int\limits_{0}^{1}\log\left(\frac{\left(\pi t-4\right)^{2}+4t^{2}\left(\textrm{arcsech}\left(t\right)+x\right)^{2}}{\left(\pi t-4\right)^{2}+4t^{2}\left(\textrm{arcsech}\left(t\right)-x\right)^{2}}\right)}\,dt\right]^{-1}\right]
\end{equation}

Ref:
-E. E. Burniston, C.E. Siewert. The use of Riemann problems in solving a class of transcendental equations. Mathematical Proceedings of the Cambridge Philosophical Society. 73. 111 - 118. (1973).
*-Henrici P., Applied and computational complex analysis, Volume III. Wiley, New York. 183-191 (1986).