Let's consider
$$\int_{0}^{\ln\left(\frac{\sqrt{3}-1}{2}\right)} \frac{1}{e^x+e^{-x}+1}\ dx$$
First, I note that
$$\frac{1}{e^x+e^{-x}+1}=\frac{1}{e^{-x}(e^{2x}+e^{x}+1)}=\frac{e^x}{e^{2x}+e^x+1}$$
So, I can rewrite the integral as follows:
$$\int_{0}^{\ln\left(\frac{\sqrt{3}-1}{2}\right)} \frac{1}{e^x+e^{-x}+1}\ dx=\int_{0}^{\ln\left(\frac{\sqrt{3}-1}{2}\right)} \frac{e^x}{e^{2x}+e^{x}+1}\ dx$$
I use the following substitution:
$$t=e^x \Longrightarrow dt=e^x dx$$
and then
$$\int_{0}^{\ln\left(\frac{\sqrt{3}-1}{2}\right)} \frac{e^x}{e^{2x}+e^{x}+1}\ dx=\int_{1}^{\frac{\sqrt{3}-1}{2}} \frac{1}{t^2+t+1}\ dt=\int_{1}^{\frac{\sqrt{3}-1}{2}} \frac{1}{\left(t+\frac{1}{2}\right)^2+\frac{3}{4}}\ dt=$$
$$=\frac{4}{3}\int_{1}^{\frac{\sqrt{3}-1}{2}} \frac{1}{\left(\frac{2t+1}{\sqrt{3}}\right)^2+1}\ dt=\frac{2}{\sqrt{3}}\left[\arctan\left(\frac{2t+1}{\sqrt{3}}\right)\right]^{\frac{\sqrt{3}-1}{2}}_1=\frac{2}{\sqrt{3}}\left(\frac{\pi}{4}-\frac{\pi}{6}\right)=\frac{\pi}{6\sqrt{3}}$$
But, observing that $\frac{\sqrt{3}-1}{2}<1$, I have to put a minus sign to the result, therefore, I get:
$$\int_{0}^{\ln\left(\frac{\sqrt{3}-1}{2}\right)} \frac{1}{e^x+e^{-x}+1}\ dx=-\frac{\pi}{6\sqrt{3}}$$
Is it correct? Is there a faster way to solve it?
