Here is a proof which you may be interested in seeing.
Recall the Cauchy Binomial Theorem which says that
$${n\choose k}_q =
q^{-k(k-1)/2} [t^k] \prod_{r=0}^{n-1} (1+q^rt).$$
First identity
With the first identity we seek to verify where $a\ge b$
$$\sum_{p=0}^b {a\choose p}_q q^{p(p-1)/2} (-1)^p
= {b-a\choose b}_q q^{ab}.$$
We obtain for the sum
$$\sum_{p=0}^b (-1)^p [t^p] \prod_{r=0}^{a-1} (1+q^rt)
= [t^b] \frac{1}{1-t} \prod_{r=0}^{a-1} (1-q^rt)
= [t^b] \prod_{r=1}^{a-1} (1-q^rt).$$
Now from the definition we have
$${-m\choose r}_q =
\frac{(1-q^{-m})\cdots(1-q^{-m-r+1})}{(1-q)\cdots(1-q^r)}
\\ = q^{-\sum_{p=m}^{m+r-1} p}
\frac{(q^m-1)\cdots(q^{m+r-1}-1)}{(1-q)\cdots(1-q^r)}
\\ = (-1)^r q^{-\sum_{p=m}^{m+r-1} p}
{m+r-1\choose r}_q.$$
This is the familiar upper negation. We get for the closed form
$$(-1)^b q^{-\sum_{p=a-b}^{a-1} p} q^{ab}
{a-1\choose b}_q
\\ = (-1)^b q^{-\sum_{p=a-b}^{a-1} p} q^{ab}
q^{-b(b-1)/2} [t^b] \prod_{r=0}^{a-2} (1+q^rt)
\\ = q^b [t^b] \prod_{r=0}^{a-2} (1-q^rt)
= [t^b] \prod_{r=0}^{a-2} (1-q^{r+1}t).$$
This is the claim.
Second identity
Here we seek with $b\ge a$ that
$$\sum_{p=a}^b {p-1\choose a-1}_q q^{-ap}
= {b\choose a}_q q^{-ab}.$$
We cite a generalization of the Cauchy Binomial Theorem which is
$${n+k-1\choose k}_q = [t^k] \prod_{r=0}^{n-1} \frac{1}{1-q^rt}.$$
Working with the coefficient in the sum we write
$${p-1\choose p-a}_q = {p-a+a-1\choose p-a}_q
= [t^{p-a}] \prod_{r=0}^{a-1} \frac{1}{1-q^rt}.$$
We get for the sum
$$\sum_{p=a}^b q^{-ap}
[t^{p-a}] \prod_{r=0}^{a-1} \frac{1}{1-q^rt}
= q^{-a^2} \sum_{p=0}^{b-a} q^{-ap}
[t^p] \prod_{r=0}^{a-1} \frac{1}{1-q^rt}
\\ = q^{-a^2} \sum_{p=0}^{b-a}
[t^p] \prod_{r=0}^{a-1} \frac{1}{1-q^{r-a}t}
= q^{-a^2} [t^{b-a}] \frac{1}{1-t}
\prod_{r=0}^{a-1} \frac{1}{1-q^{r-a}t}
\\ = q^{-a^2} [t^{b-a}]
\prod_{r=0}^a \frac{1}{1-q^{r-a}t}
= q^{-a^2} q^{-a(b-a)} [t^{b-a}]
\prod_{r=0}^a \frac{1}{1-q^{rt}}
\\ = q^{-ab} {a+b-a\choose b-a}_q =
q^{-ab} {b\choose a}_q.$$
Once more we have the claim.