Note that $\tan^{-1}(\frac{1-x}{1+x})=\frac{\pi}{4}-\tan^{-1}(x)$. With partial fraction $\frac{1}{x(1+x)}=\frac{1}{x}-\frac{1}{1+x}$
We have
$$I=\int_0^1\tan^{-1}\left(\frac{1-x}{1+x}\right)\tan^{-1}(x)\frac{dx}{x(1+x)}$$
$$=\frac{\pi}{4}\int_0^1\frac{\text{arctan} x}{x}\, dx-\int_0^1 \frac{\text{arctan}^2 x}{x}\, dx-\frac{\pi}{4}\int_0^1\frac{\text{arctan} x}{1+x}\, dx+\int_0^1\frac{\text{arctan}^2 x}{1+x}\, dx$$
The values of the first few integrals could be calculated rather easily
$$\int_0^1\frac{\text{arctan} x}{x}\, dx=G$$
$$\int_0^1 \frac{\text{arctan}^2 x}{x}\, dx=\frac{\pi G}{2}-\frac{7}{8}\zeta(3)$$
$$\int_0^1\frac{\text{arctan} x}{1+x}\, dx=\frac{\pi}{8}\log(2)$$
Our main challenge is the last integral. Integration by parts gives
$$\int_0^1\frac{\text{arctan}^2 x}{1+x}\, dx=\frac{\pi^2}{16}\log(2)-{\underbrace{\int_0^1 \frac{2 \text{arctan} x}{1+x^2}\log(1+x)\, dx}_{J}}$$
$$J=\int_0^1\int_0^1\frac{2x \arctan x}{(1+x^2)(1+yx)}\, dy\, dx$$
Note the partial fraction
$$\frac{x}{(1+x^2)(1+xy)}=\frac{1}{1+y^2}\left(\frac{x}{1+x^2}+\frac{y}{1+x^2}-\frac{y}{1+xy}\right)$$
$$\begin{split}\implies J=& \int_0^1\frac{dy}{1+y^2}\int_0^1 \frac{2x}{1+x^2}\text{arctan}(x)\, dx+\int_0^1 \frac{2y}{1+y^2}\, dy\int_0^1\frac{\text{arctan} x}{1+x^2}\, dx\\ & -\int_0^1 \int_0^1 \frac{2y\arctan(x)}{(1+y^2)(1+xy)}\, dx\, dy\end{split}$$
The integral
$$\int_0^1 \frac{2x}{1+x^2}\text{arctan}(x)\, dx=G-\frac{\pi}{4}\log(2)$$
can be proved using integration by parts and Fourier series of $\log(\cos x)$
$$J=\frac{\pi}{4}G-\frac{\pi^2}{16}\log(2)+\frac{\pi^2}{32}\log(2)-\int_0^1\frac{2y}{1+y^2}\int_0^1\frac{\text{arctan} x}{1+xy}\, dx\, dy$$
$$=\frac{\pi}{4}G-\frac{\pi^2}{32}\log(2)-\int_0^1\frac{2y}{1+y^2}\left[\frac{\pi \log(1+y)}{4y}-\int_0^1 \frac{\log(1+xy)}{y(1+x^2)}\, dx\,\right] dy$$
$$=\frac{\pi}{4}G-\frac{\pi^2}{32}\log(2)-\frac{\pi}{2}\int_0^1\frac{\log(1+y)}{1+y^2}\, dy+2\int_0^1\int_0^1 \frac{\log(1+xy)}{(1+x^2)(1+y^2)}\, dx\, dy$$
Note that
$$\int_0^1\frac{\log(1+y)}{1+y^2}\, dy=\frac{\pi}{8}\log(2)$$
Can be proved by substituting $x\mapsto \frac{1-x}{1+x}$.
Grouping the results gives
$$J=\frac{\pi}{4}G-\frac{3\pi^2}{32}\log(2)+2L$$
where $\displaystyle L=\int_0^1\int_0^1 \frac{\log(1+xy)}{(1+x^2)(1+y^2)}\, dx\, dy$
Which writing $I$ in terms of $L$ gives the equation
$$I=-\frac{\pi}{2}G+\frac{7}{8}\zeta(3)+\frac{\pi^2}{8}\log(2)-2L$$
$L$ looks symmetric and reasonable to compute, I will leave the details to OP.