The full question is:
Suppose that $I$ and $J$ are two sets, and for all $\alpha ∈ I ∪ J$ let $A_{\alpha}$ be a set.
Show that $(\bigcup_{\alpha\in I} A_{\alpha})\cup (\bigcup_{\alpha\in J} A_{\alpha}) = \bigcup_{\alpha\in I\cup J} A_{\alpha}$.
If $I$ and $J$ are non-empty, show that $(\bigcap_{\alpha\in I} A_{\alpha})\cap (\bigcap_{\alpha\in J} A_{\alpha}) = \bigcap_{\alpha\in I\cup J} A_{\alpha}$.
I managed to prove the first equality without any issues, but when it comes to the second equality, my proof never used the fact that $I$ and $J$ must be non-empty.
My proof:
Now, we show that if $I$ and $J$ are non-empty, then $(\bigcap_{\alpha\in I} A_{\alpha})\cap (\bigcap_{\alpha\in J} A_{\alpha}) = \bigcap_{\alpha\in I\cup J} A_{\alpha}$.
- First, we show that $(\bigcap_{\alpha\in I} A_{\alpha})\cap (\bigcap_{\alpha\in J} A_{\alpha})\subseteq \bigcap_{\alpha\in I\cup J} A_{\alpha}$.
Let $x\in (\bigcap_{\alpha\in I} A_{\alpha})\cap (\bigcap_{\alpha\in J} A_{\alpha})$.
Then $x\in(\bigcap_{\alpha\in I} A_{\alpha})$ and $x\in (\bigcap_{\alpha\in J} A_{\alpha})$.
By definition of $\bigcap$ , $x\in A_{\alpha}$ for all $\alpha\in I$ and $x\in A_{\alpha}$ for all $\alpha\in J$.
This implies that $x\in A_{\alpha}$ for all $\alpha\in I\cup J$.
By definition of $\bigcap$, it follows that $x\in\bigcap_{\alpha\in I\cup J} A_{\alpha}$.
Thus $x\in (\bigcap_{\alpha\in I} A_{\alpha})\cap (\bigcap_{\alpha\in J} A_{\alpha})\implies x\in\bigcap_{\alpha\in I\cup J} A_{\alpha}$.
Hence $(\bigcap_{\alpha\in I} A_{\alpha})\cap (\bigcap_{\alpha\in J} A_{\alpha})\subseteq \bigcap_{\alpha\in I\cup J} A_{\alpha}$.
- Now, we show that $\bigcap_{\alpha\in I\cup J} A_{\alpha}\subseteq(\bigcap_{\alpha\in I} A_{\alpha})\cap (\bigcap_{\alpha\in J} A_{\alpha})$.
Let $x\in\bigcap_{\alpha\in I\cup J} A_{\alpha}$.
By definition of $\bigcap$, it follows that $x\in A_{\alpha}$ for all $\alpha\in I\cup J$. This implies that for all $\alpha\in I$ and for all $\alpha\in J$, we have $x\in A_{\alpha}$.
Thus by definition of $\bigcap$, it follows that $x\in(\bigcap_{\alpha\in I} A_{\alpha})$ and $x\in(\bigcap_{\alpha\in J} A_{\alpha})$.
Thus, $x\in(\bigcap_{\alpha\in I} A_{\alpha})\cap (\bigcap_{\alpha\in J} A_{\alpha})$.
We have shown that $x\in\bigcap_{\alpha\in I\cup J} A_{\alpha}\implies x\in (\bigcap_{\alpha\in I} A_{\alpha})\cap (\bigcap_{\alpha\in J} A_{\alpha})$.
Thus $\bigcap_{\alpha\in I\cup J} A_{\alpha}\subseteq(\bigcap_{\alpha\in I} A_{\alpha})\cap (\bigcap_{\alpha\in J} A_{\alpha})$.
- Since $(\bigcap_{\alpha\in I} A_{\alpha})\cap (\bigcap_{\alpha\in J} A_{\alpha})\subseteq \bigcap_{\alpha\in I\cup J} A_{\alpha}$ and $\bigcap_{\alpha\in I\cup J} A_{\alpha}\subseteq(\bigcap_{\alpha\in I} A_{\alpha})\cap (\bigcap_{\alpha\in J} A_{\alpha})$, it follows that $(\bigcap_{\alpha\in I} A_{\alpha})\cap (\bigcap_{\alpha\in J} A_{\alpha}) = \bigcap_{\alpha\in I\cup J} A_{\alpha}$. $\square$
My question: Where in the proof should I have used the fact that $I$ and $J$ are non empty sets? Also, is this fact strictly necessary? The statement seems vacuously true if the sets were empty (although I am not sure of this)