The equation is Eq 11.20 in ECONOMETRICS by BRUCE E. H ANSEN (2021).
I have no idea on the following equation. Which property of determinant is applied in this derivation?
\begin{equation} \hat{\mathbf{G}}=\arg\min_{\mathbf{G}}\frac{\text{det}\left(\mathbf{G}^{\prime}\left[\tilde{\mathbf{X}}^{\prime}\tilde{\mathbf{X}}-\tilde{\mathbf{X}}^{\prime}\tilde{\mathbf{Y}}\left[\tilde{\mathbf{Y}}^{\prime}\tilde{\mathbf{Y}}\right]^{-1}\tilde{\mathbf{Y}}^{\prime}\tilde{\mathbf{X}}\right]\mathbf{G}\right)}{\text{det}\left(\mathbf{G}^{\prime}\tilde{\mathbf{X}}^{\prime}\tilde{\mathbf{X}}\mathbf{G}\right)} \end{equation} \begin{equation} =\arg\max_{\mathbf{G}}\frac{\text{det}\left(\mathbf{G}^{\prime}\tilde{\mathbf{X}}^{\prime}\tilde{\mathbf{Y}}\left[\tilde{\mathbf{Y}}^{\prime}\tilde{\mathbf{Y}}\right]^{-1}\tilde{\mathbf{Y}}^{\prime}\tilde{\mathbf{X}}\mathbf{G}\right)}{\text{det}\left(\mathbf{G}^{\prime}\tilde{\mathbf{X}}^{\prime}\tilde{\mathbf{X}}\mathbf{G}\right)} \end{equation} where $\mathbf{G}\in\mathbb{R}^{k\times r}$, $\tilde{\mathbf{X}}\in\mathbb{R}^{n\times k}$, $\tilde{\mathbf{Y}}\in\mathbb{R}^{n\times m}$, det$\left(\mathbf{A}\right)$ is the determinant of matrix $(\mathbf{A})$.
Since det($\mathbf A+\mathbf B) \neq$ det($\mathbf A$) + det($\mathbf B$), I believe the following derivation is wrong \begin{equation} \hat{\mathbf{G}}=\arg\min_{\mathbf{G}}\frac{\text{det}\left(\mathbf{G}^{\prime}\left[\tilde{\mathbf{X}}^{\prime}\tilde{\mathbf{X}}-\tilde{\mathbf{X}}^{\prime}\tilde{\mathbf{Y}}\left[\tilde{\mathbf{Y}}^{\prime}\tilde{\mathbf{Y}}\right]^{-1}\tilde{\mathbf{Y}}^{\prime}\tilde{\mathbf{X}}\right]\mathbf{G}\right)}{\text{det}\left(\mathbf{G}^{\prime}\tilde{\mathbf{X}}^{\prime}\tilde{\mathbf{X}}\mathbf{G}\right)} \end{equation} \begin{equation} =\arg\min_{\mathbf{G}}\frac{\text{det}\left(\mathbf{G}^{\prime}\left[\tilde{\mathbf{X}}^{\prime}\tilde{\mathbf{X}}\right]\mathbf{G}-\mathbf{G}^{\prime}\left[\tilde{\mathbf{X}}^{\prime}\tilde{\mathbf{Y}}\left[\tilde{\mathbf{Y}}^{\prime}\tilde{\mathbf{Y}}\right]^{-1}\tilde{\mathbf{Y}}^{\prime}\tilde{\mathbf{X}}\right]\mathbf{G}\right)}{\text{det}\left(\mathbf{G}^{\prime}\tilde{\mathbf{X}}^{\prime}\tilde{\mathbf{X}}\mathbf{G}\right)} \end{equation} \begin{equation} =\arg\min_{\mathbf{G}}\frac{\text{det}\left(\mathbf{G}^{\prime}\left[\tilde{\mathbf{X}}^{\prime}\tilde{\mathbf{X}}\right]\mathbf{G}\right)-\text{det}\left(\mathbf{G}^{\prime}\left[\tilde{\mathbf{X}}^{\prime}\tilde{\mathbf{Y}}\left[\tilde{\mathbf{Y}}^{\prime}\tilde{\mathbf{Y}}\right]^{-1}\tilde{\mathbf{Y}}^{\prime}\tilde{\mathbf{X}}\right]\mathbf{G}\right)}{\text{det}\left(\mathbf{G}^{\prime}\tilde{\mathbf{X}}^{\prime}\tilde{\mathbf{X}}\mathbf{G}\right)} \end{equation} \begin{equation} =\arg\min_{\mathbf{G}}\left[1-\frac{\text{det}\left(\mathbf{G}^{\prime}\left[\tilde{\mathbf{X}}^{\prime}\tilde{\mathbf{Y}}\left[\tilde{\mathbf{Y}}^{\prime}\tilde{\mathbf{Y}}\right]^{-1}\tilde{\mathbf{Y}}^{\prime}\tilde{\mathbf{X}}\right]\mathbf{G}\right)}{\text{det}\left(\mathbf{G}^{\prime}\tilde{\mathbf{X}}^{\prime}\tilde{\mathbf{X}}\mathbf{G}\right)}\right] \end{equation} \begin{equation} =\arg\max_{\mathbf{G}}\left[\frac{\text{det}\left(\mathbf{G}^{\prime}\left[\tilde{\mathbf{X}}^{\prime}\tilde{\mathbf{Y}}\left[\tilde{\mathbf{Y}}^{\prime}\tilde{\mathbf{Y}}\right]^{-1}\tilde{\mathbf{Y}}^{\prime}\tilde{\mathbf{X}}\right]\mathbf{G}\right)}{\text{det}\left(\mathbf{G}^{\prime}\tilde{\mathbf{X}}^{\prime}\tilde{\mathbf{X}}\mathbf{G}\right)}\right] \end{equation}
Can anyone explain the derivation? Many thanks!
The above equation arised in reduced rank multivariate regression, $\tilde{Y}=\mathbf{B}^{\prime}\tilde{X}+e$, where $e$ is the random error. We require the rank$(\mathbf{B})=r$. To achieve this, $\mathbf{B}=\mathbf{G}\mathbf{A}^{\prime}$, where $\mathbf{G}\in\mathbb{R}^{k\times r}$ and $\mathbf{A}\in\mathbb{R}^{m\times r}$. The regression is obtained by MLE based on the data $\left\{ \left(\tilde{X}_{i},\tilde{Y}_{i}\right)\right\} _{i=1}^{n}$. To write it in the matrix form \begin{equation} \tilde{\mathbf{Y}}=\left(\begin{array}{c} \tilde{Y}_{1}^{\prime}\\ \vdots\\ \tilde{Y}_{n}^{\prime} \end{array}\right),\tilde{\mathbf{X}}=\left(\begin{array}{c} \tilde{X}_{1}^{\prime}\\ \vdots\\ \tilde{X}_{n}^{\prime} \end{array}\right). \end{equation} There are too many math symbols, here I only show my question. It looks like an issue of matrix determinant.